⑴ rlc串联电路有哪些实际应用
RLC电路种由电阻(R)、电(L)、电容(R)组电路结构RC电路其简单例般称二阶电路应电路电压或者电流值通某由电路结构决定其参数二阶微程解电路元件都视线性元件候RLC电路视作电谐波振荡器种电路固频率般表示:(单位:赫兹Hz)<mathf_c
=
{1
\over
2
\pi
\sqrt{L
C}}
</math
种带通或带阻滤波器形势其Q点由式:<mathQ
=
{f_c
\over
BW}
=
{2
\pi
f_c
L
\over
R}
=
{1
\over
\sqrt{R^2
C
/
L}}
</math
RLC电路组结构般两种:1.串联型2.并联型
⑵ RLC串联电路能否利用串联电路的谐振特性来测量电感或电容
可以的。
实际上在有些电容器的生产线上有这类检测仪器。
原理如下:
一个品质因数Q很高的标准电感器L、一个损耗tanδ很小的标准电容器C,组成一个LC电路,当一个等幅扫频信号通过该电路时,在L或C上的电压波形在显示器上的曲线,最高点P就是谐振频率。当被测电容器Cx代替C,若Cx=C,则P点在X轴上的位置不变,辐度(Y轴上的位置)与Cx的损耗tanδ有关。若Cx≠C,则P点在X轴上的位置变化,根据X轴上的光标可以估算出Cx的容量。
该原理也同样适用于检测电感器Lx。
⑶ rlc串联谐振电路实验中用晶体管毫伏表比用通用常用的电流表,电压表测量有什么优点
晶体管毫伏表比用通用常用的电流表,电压表测量有如下优点:测量精度高,频率特性好,操作方便,最重要的是它有隔直流的功能
⑷ rlc串联谐振电路
RLC电路:由电阻,电感,电容组成的电路。RLC电路是一种由电阻(R)、电感(L)、电容(C)组成的电路结构。RC电路是其简单的例子,它一般被称为二阶电路,因为电路中的电压或者电流的值,通常是某个由电路结构决定其参数的二阶微分方程的解。电路元件都被视为线性元件的时候,一个RLC电路可以被视作电子谐波振荡器。这种电路的固有频率一般表示为:(单位:赫兹Hz)。
RLC串联电路的相量图:
Φ=arctan(X/R)=arctan[XL-XC)/R]
当XL>XC时,X>0,R>0,电路呈感性
当XL<XC时,X<0,R>0,电路呈容性
当XL=XC时,X=0,R>0,电路呈电阻性
称为串联谐振状态
Z=[(XL-XC)^2+R^2]^(1/2)U=|z|*I

⑸ RLC串联谐振电路的研究的实验中:谐振时,比较输出电压与输入电压是否相等,试分析原因
谐振时,理论上是相等的,但由于元件参数并非理想参数,尤其是电感元件有一定的等效电阻,而非理想的纯电感。所以实验时,数据与理论值有一定差距。
输出电压UL=XL*I =XL*U/R
所以输出电压随着电路中电阻的减小而变大
Q=UL/U=XL/R 因此Q与R有直接关系

(5)有哪些仪器运用了rlc谐振电路扩展阅读:
对于包含电容和电感及电阻元件的无源一端口网络,其端口可能呈现容性、感性及电阻性,当电路端口的电压U和电流I,出现同相位,电路呈电阻性时。称之为谐振现象,这样的电路,称之为谐振电路。
谐振的实质是电容中的电场能与电感中的磁场能相互转换,此增彼减,完全补偿。电场能和磁场能的总和时刻保持不变,电源不必与电容或电感往返转换能量,只需供给电路中电阻所消耗的电能。
⑹ rlc串联谐振电路资料
rlc串联谐振电路资料?武汉华能阳光电气是专业从事电力设备、仪器仪表生产的企业。
供应的设备有:绝缘油介电强度自动测试仪、试验台、绝缘油介电强度测试仪、控制台、接线图、控制箱校验仪、局部放电试验、、FS6微水测量仪、直流高压发生器、FS6气体检漏仪、油浸式试验变压器等仪器仪表的企业、具体的你可以进入武汉华能阳光电气公司官网进行了解。
⑺ R·L·C串联谐振电路的研究实验报告 谢谢
实验8、RLC串联谐振电路的研究
(研究性实验)
一、学时分配
3学时。
二、实验目的
1. 学习用实验方法测定RLC串联电路的幅频特性曲线。
2. 加深理解电路发生谐振的条件、特点,掌握通过实验获得谐振频率的方法。
3. 掌握电路通频带、品质因数的意义及其测定方法。
三、实验原理
在图8-1所示的RLC串联电路中,当正弦交流信号的频率改变时,电路中的感抗、容抗随之而变,电路中的电流也随而变。取电阻R上的电压为输出,以频率为横坐标,输出电压的有效值为纵坐标,
绘出光滑的曲线,即为输出电压的幅频特性,如图8-2所示。
图8-1 RLC串联电路
图8-2 幅频特性
1. 谐振
在时,,电路发生谐振。称为谐振频率,即幅频特性曲线尖峰所在的频率点,此时电路呈纯阻性,电路的阻抗模最小。在输入电压一定时,电路中的电流达到最大值,且与输入电压同相位。这时,,,其中称为电路的品质因数。
2. 电路品质因数值的测量方法
1)根据公式测定,其中、分别为谐振时电感L和电容C上的电压有效值;
2)通过测量谐振曲线的通频带宽度,再根据求出值。其中为谐振频率,和分别是下降到时对应的频率,分别称为上、下限截止频率,如图8-2所示。
图8-2所示的幅频特性中,值越大,曲线越尖锐,通频带越窄,电路的选择性越好。电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。
四、实验仪器和器材
1. 双踪示波器1台
2. 信号发生器1台
3. 交流毫伏表1台
4. 频率计1台
5. 电阻2只 100Ω×1;200Ω×1
6. 电容1只 0.033μF×1
7. 电感1只 9mH×1
8. 短接桥和连接导线若干 P8-1和50148
9. 实验用9孔插件方板1块 297mm×300mm
五、实验内容
按图8-3搭接实验电路,用交流毫伏表测电阻R两端电压,用示波器监视信号发生器的输出,使其幅值等于1V,并在频率改变时保持不变。
图8-3 谐振实验电路
1. 电路谐振频率的测定
将毫伏表接在电阻R两端,调节信号发生器的频率,由低逐渐变高(注意要维持信号发生器的输出幅度不变)。当毫伏表的读数最大时,读取信号发生器上显示的频率,即为电路的谐振频率,并用毫伏表测量此时的UL与UC的值(注意及时更换毫伏表的量程),将数据记入表8-1中。
2. 测试电路的幅频特性
在谐振点两侧,将信号发生器的输出频率逐渐递增和递减500Hz(或1KHz),依次各取8个频率点,用毫伏表逐点测出UO、UL与UC的值,将数据记入表8-1中。在坐标纸上画出幅频特性,并计算电路的值。
表8-1 幅频特性的测定
f/kHz
仿真数据
UO (V)
实测数据
仿真数据
UL (V)
实测数据
仿真数据
UC (V)
实测数据
3. 值改变时幅频特性的测定
图8-3电路中,把电阻R改为200Ω,电感、电容参数不变。重复步骤1、2的测试过程,将数据记入表8-2中。在坐标纸上画出幅频特性,计算电路的值,并与按表8-1画出的幅频特性比较。
表8-2 值改变时幅频特性的测定
f(KHz)
仿真数据
UO (V)
实测数据
仿真数据
UL (V)
实测数据
仿真数据
UC (V)
实测数据
4. 测试电路的相频特性
保持图8-3电路中的参数。以为中心,调整输入电压源的频率分别为5KHz和15KHz。从示波器上显示的电压、电流波形测出每个频率点上电压与电流的相位差,并将波形描绘在坐标纸上。
六、实验注意事项
1. 测试频率点的选择应在靠近谐振频率附近多取几点。在信号频率变换时,应调整信号的输出幅度(用示波器监视),使其维持在1V的输出。
2. 在测量UL和UC数值前,应将毫伏表的量程改大约10倍,而且,在测量UL与UC时,毫伏表的“+”端应接L与C的公共端,其接地端分别触及L和C的近地端N2和N1。
七、思考题
1. 根据实验电路给出的元件参数值,估算电路的谐振频率。
2. 改变电路的哪些参数可以使电路发生谐振,电路中R的数值是否影响谐振频率?
3. 如何判别电路是否发生谐振 测试谐振点的方案有哪些
4. 电路发生串联谐振时,为什么输入电压不能太大?如果信号发生器给出1V的电压,电路谐振时,用交流毫伏表测UL和UC,应该选择用多大的量程
5. 要提高RLC串联电路的品质因数,电路参数应如何改变
八、实验报告要求
根据测量数据,绘出不同值的三条幅频特性曲线:~,~,
~。
2. 计算出通频带与值,说明不同R值时对电路通频带与品质因素的影响。
3. 对两种不同的测值的方法进行比较,分析误差原因。
4. 谐振时,比较输出电压与输入电压是否相等 试分析原因。
5. 通过本次实验,总结、归纳串联谐振电路的特性。
⑻ multisim仿真RLC并联谐振电路,波特图示仪应该怎么连
波特仪的“IN”端应通过一只电阻接入RLC并联谐振电路,如图中的R2

可根据谐振频率、插入衰减、谐振曲线的尖锐程度适当调整扫描频率范围和电平范围,以便更好地观察谐振曲线和测量参数。
注意:在Multisim中应用波特仪,一定要在被测电路(网络)输入端另加一信号源(虚拟仪器中的函数发生器或元件库中的信号源),否则波特仪没有结果。
⑼ RLC串联谐振电路(实验)
因此这是电流谐振。串联谐振电路当然可以做升压变压器:当电容与电感的阻抗值接近时这两个阻抗压降可达到非常高的数值。电气试验中大型变压器交流试验就有利用