导航:首页 > 仪器仪表 > 近红外光用什么仪器可以检测

近红外光用什么仪器可以检测

发布时间:2022-06-06 06:24:29

㈠ 怎么检测红外线

用红外焦平面阵列加上红外镜头,比如现在比较常见的热像仪。

㈡ 检测红外灯光线的仪器

1800年4月24日英国伦敦皇家学会(ROYAL SOCIETY)的威廉·赫歇尔发表太阳光在可见光谱的红光之外还有一种不可见的延伸光谱,具有热效应.他所使用的方法很简单,用一支温度计测量经过棱镜分光后的各色光线温度,由紫到红,发现温度逐渐增加,可是当温度计放到红光以外的部份,温度仍持续上升,因而断定有红外线的存在.
你也可以这样试

㈢ 有什么方法可以检测红外线的存在

红外检测的基本方法分为两大类型,即被动式和主动式。被动式的红外检测在设备的红外检测诊断技术中应用比较多;主动式的红外检测又可分为单面法和双面法。
红外检测中对被测目标的加热方式也分为稳态加热和非稳态加热。
红外检测仪器的安装和运载方式有固定式、便携式、车载式和机载式(直升机装载)等多种。
(1)被动式红外检测
所谓被动式系指进行红外检测时不对被测目标加热,仅仅利用被测目标的温度不同于周围环境温度的条件,在被测目标与环境的热交换过程中进行红外检测的方式。被动式红外检测应用于运行中的设备、元器件和科学试验中。由于它不需要附加热源,在生产现场基本都采用这种方式。
(2)主动式红外检测
主动式红外检测是在进行红外检测之前对被测目标主动加热,加热源可来自被测目标的外部或在其内部,加热的方式有稳态和非稳态两种,红外检测根据不同情况可在加热过程当中进行,也可在停止加热有一定时间后进行。
1)单面法:对被测目标的加热和红外检测在被测目标的同一侧面进行。
2)双面法:相对于上述的单面法而言,双面法是把对被测目标的加热和红外检测分别
在目标的正、反两个侧面进行。
(3)加热方式
1)稳态加热:将被测目标加热到其内部温度达到均匀稳定的状态时,再把它置放于一个低于(或高于)该恒定温度的环境中进行红外检测。
这种方式多用于材料的质量检测,如被测物内部有裂纹、孔洞或脱粘等缺陷时,则被测物与环境的热交换中热流将受到缺陷的阻碍,其相应的外表面就会产生温度的变化,与没有缺陷的表面相比则会出现温差。
2)非稳态加热:对被测目标加热,不需要使其内部温度达到均匀稳定状态,而在它的内部温度尚不均匀、具有导热的过程中即进行红外检测。
3)如将热量均匀地注入被测目标,热流进入内部的速度要由它的内部状况决定,若内部有缺陷,则会成为阻档热流的热阻,经一定时间会产生热量堆积,在其相应的表面会产生热的异常。缺陷造成的热流变化取决于缺陷的位置、走向、几何尺寸和材料的热物理性能。

㈣ 现代近红外光谱分析技术的近红外光谱仪器发展概况

现代近红外光谱仪器 从分光系统可分为固定波长滤光片、 光栅色散、 快速傅立叶变换和声光可调滤光器(AOTF)四种类型。 光栅色散型仪器根据使用检测器的差异又分为扫描式和固定光路两种。
在各种类型仪器中, 滤光片型主要作专用分析仪器,为提高测定结果的准确性, 现在的滤光片型仪器往往装有多个滤光片供用户选择。
光栅扫描式是最常用的仪器类型, 采用全息光栅分光、 PbS 或其他光敏元件作检测器,具有较高的信噪比。 由于仪器中的可动部件 (如光栅轴)在连续高强度的运行中可能存在磨损问题, 从而影响光谱采集的可靠性, 不太适合于在线分析 。
傅立叶变换近红外光谱仪是目前近红外光谱仪器的主导产品, 具有较高的分辨率和扫描速度, 这类仪器的弱点同样是干涉仪中存在移动性部件,且需要较严格的工作环境。
AOTF 是 90 年代初出现的一类新型分光器件, 采用双折射晶体, 通过改变射频频率来调节扫描的波长, 整个仪器系统无移动部件, 扫描速度快, 具有较好的仪器稳定性 , 特别适合用于在线分析[ 6 ~ 8] 。 但目前这类仪器的分辨率相对较低,AOTF 的价格也较高。
随着多通道检测器件生产技术的日趋成熟, 采用固定光路、 光栅分光、 多通道检测器构成的 NIR仪器, 以其性能稳定、 扫描速度快、 分辨率高、 性能价格比 好等特点正越来越引起人们的重视 。 在与固定光路相匹配的多通道检测器中, 常用的有二极管阵列 (Photodio de-array简称 PDA)和电荷耦合器件 (Charg e Coupled Devices 简称CCD)两种类型。
图 2 为近红外光谱仪结构示意图。
在研制新型近红外光谱仪器, 提高仪器性能 的同时, 为适合各类样品的分析, 近红外光谱测样器件的研制也越来越引起人们的重视。 在各类测样器件中, 最引人注目的是各种光纤测样器件的开发。 通过光纤测样器件, 一方面可以方便测样过程, 另一方面可以利用光纤的远距离传输特性, 将近红外光谱技术用于在线分析。

㈤ 近红外光谱仪器

转载:《分析测试网络网》关于近红外光谱仪器的主要性能指标

一、波长范围:

仪器的波长范围是指近红外光谱仪所能记录的光谱范围。对任何一台特定的近红外光谱仪器,都会有其特定的光谱范围,光谱范围主要取决于仪器的光路设计、分光种类、检测器的类型以及光源。通用型近红外光谱仪器往往覆盖了整个近红外的光谱范围12000-4000cm-1(800-2500nm)。

二、分辨率(Resolution):

近红外光谱仪的分辨率是指仪器对于紧密相邻的峰可以分辨的最小波长间隔,表示仪器实际分开相邻峰的能力,即ν/△ν或(λ/△λ),ν为两峰中任一峰的波数,△ν为两峰波数之差。它是最主要的仪器指标之一,也是仪器质量的综合反映。

仪器的分辨率主要取决于仪器分光系统的性能。对于色散型仪器而言,其分辨率取决于分光后狭缝截取的波段精度,狭缝越小截取的波段越窄,分辨率越高。但随之而来的是能量急剧下降,灵敏度不断降低,为了兼顾检出灵敏度,就不能让狭缝无限制地缩小来提高分辨率,因此,要想让色散型的仪器分辨率达到0.1cm- 1,又能得到一张质量良好的谱图是很困难的事。而对于傅里叶型的近红外光谱仪,由于有多路通过的特点,无狭缝的限制,因此仪器的分辨率仅取决于干涉采样数据点的多少,即取决于动镜移动的距离,由于动镜的移动由激光控制,因此可以很轻松地得到一张高质量、高分辨率的谱图。

三、准确性(Accuracy):

近红外光谱仪的准确性包括波长准确性和光度准确性两部分。

波长准确度指测定时仪器显示的波长值和分光系统实际输出的单色光的波长值之间的符合程度。波长准确度一般用波长误差,即上述两值之差来表示。由于近红外分析是用已知样品所建立的模型来分析未知样品的,如果仪器的波长准确度不能保证,则不同测定光谱就会因仪器波长的移动(即X轴发生了平移),而使整组光谱数据产生偏移,进而造成分析结果的误差。因此保证波长准确度不仅是近红外光谱仪能够准确测试样品的前提,也是保证分析结果准确的前提,更是保证模型能够准确传递的前提。仪器的波长准确度主要取决于其光学系统的结构,此外还会受到环境温度的影响。滤光片型近红外光谱仪和色散型近红外光谱仪受其关心光学系统结构的限制,其波长准确度较低,使用中需要经常用已知波长且性质稳定的标准物质对仪器进行校正。相比之下,傅里叶近红外光谱仪的光学系统结构简单,干涉仪单色性能极好的氦-氖干涉系统作为采样标尺,且内部一般还装有波长校准系统,因此仪器的波长准确度一般都非常高。

光度准确性指仪器对某物质进行测量时,测得的光度值与该物质真实值之差。仪器ideas光度准确性主要由检测器、放大器、信号处理电路的非线性引起,在光谱图中表现为Y轴的误差,通常直接影响近红外定量分析结果的准确性。

四、精密度(Precision):

精密度反映不同次实验的重现程度,但不一定是正确值。近红外光谱仪的波长精密性是体现仪器稳定性的最重要指标。波长精密度又被称为波长重复性,是表征对同一样品进行多次扫描测定时,样品光谱峰位置的差异或重复性。通常用规定的测试条件下,对某一样品多次测量所得到的谱峰波长的标准差来表示。波长精密度主要取决于仪器光学系统的可动部件越少,仪器的波长精密度越高。

五、信噪比(Signal to noise ratio):

信噪比是指样品吸光度与仪器吸光度噪声的比值。仪器吸光度噪声可通过在一定的测试条件下,在确定的波长范围内对空白相应变化的分析获得,用其最大噪声峰值或该波长范围内所有噪声峰值的均方根值(RMS)表征,通常采用峰值表征更为直观。当在确定的波长范围内对同一样品进行多次测量时,仪器吸光度噪声表现为测得的样品吸光度的标准差。仪器的噪声主要取决于仪器光源的稳定性、电子系统的噪声、检测器产生的噪声以及环境影响所产生的噪声,如电子系统设计不良、仪器接地不良、外界电磁干扰等因素都会使仪器的噪声增大。近红外光谱分析是一门弱信号分析技术,即从一个很强的背景信号中提取出相对较弱的有用信息,得到分析结果,因此信噪比是近红外光谱仪器非常重要的指标之一,直接影响分析结果的准确度和精确度。

六、杂散光(Stray radiation)

杂散光是指达到检测器的除去所需波长的分析光以外的其他波长的光。通常以没有吸收样品时达到检测器的总能量或总功率的百分率来表示。杂散光主要是由于光学器件表面的缺陷、光学系统设计不良以及机械零件表面处理不佳等因素引起,尤其在色散型近红外光谱仪器的设计中,对杂散光的控制非常关键,其往往是导致仪器测量出现非线性的主要原因。杂散光的存在,使测出的吸光值比真实值低。在强吸收谱带处,杂散光造成的影响是严重的,甚至导致错误的结论,但其对高透过率的弱谱带的影响较小。由于光源长波部分的辐射能量小,因而光源辐射能量大的短波部分的散射光会在长波区造成较大的影响。抗杂散光能力越强,仪器的灵敏度越高。傅里叶型近红外光谱检测器上检测到的信号,不是光的实际信号,而是按照f=2vν(其中f—调制频率;v—动镜移动速度;ν—波数)调制的声频信号,故外界的高杂散光不会干扰检测,可当作直流分量处理。一般情况下,傅里叶型仪器的杂散光信号可以忽略不计,只有在考察光栅型仪器时才需要考虑这个指标。

七、软件功能以及数据处理能力:

软件是现代近红外光谱仪器的重要组成部分,软件一般由光谱采集软件和化学计量学处理软件两部分组成。光谱采集软件通常由仪器的设计所决定,而化学计量学软件和使用者的日常工作关系密切。光谱化学计量学软件一般由谱图的预处理、建立定性或定量校正模型和未知样品的预测三大部分组成。不同公司 的仪器装载的化学计量学软件差异较大。有些软件的智能化程度较高,可以推荐最佳主成分维数等指标,适合初学者和从事科研的科学工作者使用;有些软件的智能化程度则差些,仅仅适合经验丰富的使用者。

在近红外光谱仪的使用过程中,如何对其各项性能进行客观的评价是分析工作者要考虑的问题,在对一台近红外光谱仪进行客观评价时,要注意下列的性能指标。

朋友可以到行业内专业的网站进行交流学习!
分析测试网络网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址网络搜下就有。

㈥ 什么工具可以检测出红外线

所有相机包括行车记录仪,只要把滤光片拿掉,只要光圈够大就是通光量大些,都可以看到和拍摄红外线影像!用摄像头上的LED红外线发光二极管用电烙铁烙下来,一个或并联几个,用普通1.5伏电池就可以做个红外线发射器!

㈦ 红外光谱的仪器

红外光谱分析是利用红外光谱对材料分子进行的分析和鉴定方法。检测时会将一束不同波长的红外射线照射到材料上,波长的红外光被吸收,形成这红外光谱。


红外光谱分析具有以下特点:1.除单原子分子及单核分子外,几乎所有有机物均有红外吸收。2.特征性强,可使用定性分析,对红外光谱的波数位置、波峰数目及强度确定分子结构,4.定量分析固、液、气态样均可,用量少,不破坏样品。电火花直读光谱仪也是同样利用光谱检测的质检设备。
并且红外光谱仪根据检测方式可以分为两种,一种是采用棱镜和光栅的光谱仪,属于色散型检测,它的单色器为棱镜或光栅,属单通道测量。其次是傅里叶变换红外光谱仪,它属于非色散型检测。二者可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。因此这类光谱分析仪价格也会有所不同。企业可进一步咨询光谱仪价格的其他相关问题,工程师将会结合20年实战经验,以及相关材料检测专业知识,为您在线解答。

㈧ 物体发出红外线 如何检测

可以用红外测温仪或者红外热像仪检测。
南京盛亿科技专业生产红外测温仪、热像仪

㈨ 红外光谱适用于什么样品的检测

红外分近,中,远三种。根据应用范围看,近红外是测试气体样品的,中红外是测试有机化合物的,远红外是测试无机物类的。红外光谱可以测试各种状态的样品,气体,液体及固体都可以,配上不同的测试方法还可以不用损坏样品进行测试的。
供参考。

㈩ 近红外光谱分析仪的组成

近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换、声光可调滤光器和阵列检测五种类型。
滤光片型主要作专用分析仪器,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。光栅扫描式具有较高的信噪比和分辨率。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太适合于在线分析。傅立叶变换近红外光谱仪是具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动性部件,且需要较严格的工作环境。声光可调滤光器是采用双折射晶体,通过改变射频频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快。但目前这类仪器的分辨率相对较低,价格也较高。
随着阵列检测器件生产技术的日趋成熟,采用固定光路、光栅分光、阵列检测器构成的NIR仪器,以其性能稳定、扫描速度快、分辨率高、信噪比高以及性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的阵列检测器中,常用的有电荷耦合器件(CCD)和二极管阵列(PDA)两种类型,其中Si基CCD多用于近红外短波区域的光谱仪,InGaAs基PDA检测器则用于长波近红外区域。
近红外光谱仪器的主要性能指标

在近红外光谱仪器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台近红外光谱仪器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。

1、仪器的波长范围
对任何一台特定的近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域。

2、光谱的分辨率
光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。[1]
3、波长准确性
光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。
4、波长重现性
波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。
5、吸光度准确性
吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。
6、吸光度重现性
吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。
7、吸光度噪音
吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。
8、吸光度范围
吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。
9、基线稳定性
基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。
10、杂散光
杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。
11、扫描速度

扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道近红外光谱仪器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。

12、数据采样间隔
采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。
13、测样方式
测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。
14、软件功能
软件是现代近红外光谱仪器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。

阅读全文

与近红外光用什么仪器可以检测相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59