A. 插片式虚拟仪器系统有哪些
虚拟仪器系统主要由以下三部分组成:
1、高效的软件:软件是虚拟仪器技术中最重要的部份。使用正确的软件工具并通过设计或调用特定的程序模块,工程师和科学家们可以高效地创建自己的应用以及友好的人机交互界面。
2、模块化的I/O硬件:面对如今日益复杂的测试测量应用,已经提供了全方位的软硬件的解决方案。无论您是使用PCI, PXI, PCMCIA, USB或者是1394总线,都能提供相应的模块化的硬件产品,产品种类从数据采集、信号条理、声音和振动测量、视觉、运动、仪器控制、分布式I/O到CAN接口等工业通讯,应有尽有。
3、用于集成的软硬件平台:专为测试任务设计的PXI硬件平台,已经成为当今测试、测量和自动化应用的标准平台,它的开放式构架、灵活性和PC技术的成本优势为测量和自动化行业带来了一场翻天覆地的改革。
B. 简述虚拟仪器技术及LabVIEW编程课程的认识和理解
虚拟仪器--软件就是仪器
虚拟仪器, 虚拟示波器, 虚拟仪器技术, 虚拟仪器软件, 虚拟仪器开发, 虚拟仪器组成
一、引言
当前多媒体计算机、信息高速公路和计算机网络是计算机信息科学的三个重要发展方向。它们相互联系、相互促进、共同发展,已经渗透到人们日常工作、生活、学习、娱乐的各个方面,逐步地由办公室、实验室走向家庭。
虚拟现实是多媒体计算机的一个重要应用领域,多媒体技术是虚拟现实的技术基础。虚拟现实(Virtual Reality)是利用多媒体计算机技术生成的一个具有逼真的视觉、听觉、触觉及嗅觉的模拟现实环境。用户可以用人的自然技能对这一虚拟的现实进行交互体验,而用户体验到的结果--该虚拟现实的反应与用户在相应的真实现实中的体验结果相似或完全相同。虚拟现实的概念包括如下三个层次的含义:
1、虚拟现实是利用计算机技术而生成的逼真的实体,人们对该实体具有真实的三维视觉、立体听觉、质感的触觉和嗅觉。
2、人们可以通过自然技能与虚拟现实进行对话,即人的头、眼、四肢等的各种动作在虚拟现实中的反应具有真实感。
3、虚拟现实技术往往要借助一些三维传感设备来完成交互动作,如头盔式立体显示器、数据手套、数据衣服、三维操纵器等。
虚拟现实技术虽然现在还处于初级阶段,但已在科学可视化、CAD、飞行器/汽车/外科手术、虚拟仪器等的操作模拟等方面得到了应用。已经在航空航天、国防军事、生物医学、教育培训、娱乐游戏、旅游等领域显示出广阔的应用前景。
虚拟仪器(Virtual Instrument--VI)是虚拟现实在仪器仪表领域中的一个重要应用,目前已在国际上悄然兴起。虚拟仪器是以多媒体计算机作为基础,使用图形界面编程技术,模拟实际仪器的面板、功能和操作,从而生成完成各种任务的专用仪器。
由于科学技术的高度发展,导致了各种功能强大、越来越复杂的仪器不断涌现,其中很多仪器都以计算机作为基础,出现了仪器计算机化的趋势,其主要表现为:
1、硬件与计算机的接口标准化
2、硬件软件化
3、软件模块化
4、模块控件化
5、系统集成化
6、程序设计图形化
7、科学计算可视化
8、硬件接口软件驱动化
由于计算机软、硬件技术的不断发展,加之实际应用的需要,使人们对虚拟仪器的兴趣越来越浓厚,研制虚拟仪器也成为了现实的可能。研制虚拟仪器主要源于以下目的:
1、节省仪器开发的时间和经费
2、充分利用计算机数据处理和分析的功能
3、统一仪器的用户界面
4、增强仪器的功能和适用范围
5、集成仪器的需要
6、使仪器容易扩展
虚拟仪器主要由以下几部分组成:
1、界面控件库
2、数据输入、输出
3、数据处理方法库
4、数据表示库
5、数据存储与管理
6、任意信号发生
7、图形界面编程环境
界面控件库中包括一些常用仪器的面板部件,如指示器、计量表、发光二极管、按钮、转盘、刻度盘、滑动条等,每个控件都带有可编程的函数与属性。
数据输入与输出是指从外部设备获取数据进入计算机或从计算机输出数据去控制外部设备,需要建立与数据采集板、串并口、以及其他标准化接口(IEEE-488、GPIB、RS-232、RS-422、SCSI、VXI等)通信的驱动软件,从而扩展仪器的适用
范围与应用领域。
数据处理方法库中集中了许多数据处理方法,如FFT计算、滤波、建模、参数估计等,并提供这些处理方法的编程接口,只需把这些方法简单的组合即可完成各种复杂的任务。
数据表示是指用一定的方式来显示数据和处理结果,其中包括数字显示、曲线显示、直方图、散点图、二维图形、三维网格图形、三维填充图形、四维图形、图象乃至动态图形或图象等,使得数据表示十分直观,易于理解。
数据存储与管理主要是指提供数据存储的格式、数据查询方法、数据浏览方法等。
信号产生是指根据需要产生任意信号,其中一些标准信号可以用于仪器测试和自检之用。
图形编程环境是指用户可以任意组合控件与方法,将其联接成一个整体,形成专用仪器的工具。利用虚拟仪器用户可以象搭积木一样很快生成所需要的各种仪器。
二、现有虚拟仪器与集成环境举例
1、MATLAB:高性能数值计算和数据分析软件
MATLAB是由美国Mathworks公司研制的高性能数值计算和数据分析软件。它已经成为工程和科学研究的工业标准,它具有独特的用户交互界面、复杂的数值计算、强大的数据分析、灵活的科学图形、快速的计算、方便的扩展等特点,是高产和创造性科学研究的首选软件。
MATLAB的基本功能有:
※ 矩阵运算
※ 矩阵分解
※ 矩阵特征值与特征向量计算
※ 信号卷积
※ 谱估计
※ 复数运算
※ 一维和二维FFT
※ 滤波器设计与滤波
※ 曲线拟合
※ 三次样条拟合
※ 贝赛尔函数
※ 非线性优化
※ 线性方程组求解
※ 微分方程
MATLAB包括的工具箱有:
※ 数字信号处理工具箱
※ 控制系统设计工具箱
※ 系统辨识工具箱
※ 自扩展工具箱
MATLAB包括的绘图函数:
※ 直方图
※ 散点图
※ 曲线图
※ 三维网格图
※ 三维填充图
※ 等值线图
※ 极坐标图形
※ X-Y绘图
※ 图象显示
2、DADiSP:科学家和工程师的数据分析与图形软件
DADiSP软件由美国DSP Development Corporation公司研制,主要作为科学家和工程师用于数据分析和图形显示工具。它包括以下功能:
※ 矩阵运算
※ 特征向量与特征值计算
※ 一维、二维FFT与卷积
※ 二维、三维、四维图形显示
※ 医学图象处理
※ 卫星遥感图象处理
※ 地震信号处理
※ 统计分析与处理
※ 实验设计
※ 假设检验
※ 滤波器设计
※ 声纳雷达信号处理
※ 语音与通信信号处理
※ 振动分析
3、MP100:医学信号采集与处理系统
MP100是由美国BIOPAC System公司研制的医学信号采集与处理系统,它与AcqKnowledge软件一起运行,提供灵活的、易于使用的模块化系统,使您能随心所欲的完成数据采集和分析任务。AcqKnowledge是一个功能强大、十分灵活的软件包,它使用下拉式菜单和对话框,无需学习另外的编程语言,就可以设计出复杂的数据采集、模拟、触发和分析系统。主要包括实时数据记录、分析和滤波,离线数据分析与处理,数据的各种图形表示等功能。该系统可以与虚拟仪器LabVIEW联接,提供可视化图形编程环境。它的主要应用领域有:
※ 运动生理学
※ 肌电信号记录
※ 心信电记录与分析
※ 脑电记录与分析
※ 诱发电位记录与分析
※ 眼震电图和眼球运动分析
※ 神经传导分析
※ 精神生理学
※ 药理学
※ 遥测监护
4、LabVIEW:图形编程虚拟仪器
LabVIEW是美国National Instrument Corporation公司研制的图形编程虚拟仪器系统。主要包括数据采集、控制、数据分、数据表示等功能,它提供一种新颖的编程方法,即以图形方式组装软件模块,生成专用仪器。LabVIEW由面板、流程方框图、图标/连接器组成,其中面板是用户界面,流程方框图是虚拟仪器源代码,图标/连接器是调用接口(Calling Interface)。流程方框图包括输入/输出(I/O)部件、计算部件和子VI部件,它们用图标和数据流的连线表示;I/O部件直接与数据采集板、GPIB板、或其他外部物理仪器通信;计算部件完成数学或其他运算与操作;子VI部件调用其他虚拟仪器。
5、LabWINDOWS/CVI:C语言编程的虚拟仪器
LabWINDOWS的功能与LabVIEW相似,且由同一家公司研制,不同之处是它可用C语言对虚拟仪器进行编程。
6、LabLinc V:模块化的虚拟仪器系统
LabLinc V由美国COULBOURN INSTRUMENTS公司研制的模块化虚拟仪器系统,它由基本单元、信号采集与处理、控制等模块组成,主要应用于生理学、生物医学和生物力学等领域中的数据采集、实时显示和过程控制等。
7、HyperSignal:可视化信号处理系统设计
HyperSignal由美国Hyperception公司研制的可视化信号处理系统设计软件,它使信号处理系统设计的过程可视化,同时使信号处理结果可视化。
8、Model900:灵活的数据采集与波形产生系统
Model900由美国Applied Signal Technology公司研制,提供高速大容量数据采集、波形产生等功能,使用虚拟仪器环境以节省开发时间和资金。
9、DASP:大容量数据自动采集与处理分析软件
DASP由东方振动和噪声技术研究所研制,主要用于科学实验数据记录与分析,多功能信号采集与分析,自动化数据采集、显示、读数、计算、分析、存储、打印、绘图等。
10、LabDoc:集成仪器软件包
LabDoc由日本康泰克电子技术有限公司研制,它具有多种测量仪器功能,通过图形用户界面和在线帮助,能提供容易操作的仪器画面。可以应用于实验室、生产线检查、教育与培训等领域,主要测试功能有:
※ 数字滤波
※ 脉冲发生
※ 函数发生
※ 波形发生
※ 调谐信号发生
※ FFT分析
※ 频率计
以上我们列举了十种目前比较流行的虚拟仪器和集成环境系统,其中以美国在这方面的工作最为出色,而我国在这方面才刚刚起步,尚未见到完整的虚拟仪器系统。由以上列举的例子可以看出,虚拟仪器具备如下特点:
※ 涉及较深奥的数值计算方法
※ 集成了信号处理与过程控制算法
※ 软、硬件模块互相独立
※ 具备二次开发的集成编程环境
※ 是多学科交叉、渗透的产物
三、虚拟医学信号处理仪器
医学信号范围十分广泛,其中常见的医学信号有心电、脑电、诱发电位、肌电、眼电、胃电、神经脉冲电位、血压、脉搏波、呼吸波、温度等信号,它们特点各
不相同,有各自的频带、幅度范围、干扰来源等,因而使得医学信号处理变得十分复杂。
无论哪种医学信号仪器,几乎都涉及到信号放大、采集、分析、处理、滤波等共同的任务,同时不同的信号又具有各自特殊的处理方法,这些共同性和特异性的有机结合,形成集成环境是虚拟仪器的基础。
由于多参数临床监护和综合诊断的需要,医学信号的采集处理仪器呈现出集成化的趋势,人们从研制单一功能的医学信号仪器转向研制多功能集成化仪器,然而这种集成化并非单功能仪的堆积组合,而是从不同单功能仪器中找出共同点和不同点,形成软、硬件模块,将医学信号处理仪器计算机化,构成医学信号处理仪器开发环境,即虚拟仪器。
虚拟医学信号处理仪器是一个颇具具前景的领域,许多医疗仪器公司都看好这一市场前景,投入大量的人力、物力和财力来从事这方面的研究与开发,前面提到的MP100医学数据采集系统和LabLinc V模块化虚拟仪器就是其中的杰出代表。
虚拟医学信号处理仪是开发生产各种医学信号仪的工具。对于开发者而言,就可以象搭积木似的很快生成专用仪器,节省大量的开发时间和资金;对于用户而言,可以少花钱,多买仪器。虚拟医学信号处理仪器为集成化多功能仪器的开发奠定了基础,而且可以把最新研究成果尽快的应用到仪器中来。另外,虚拟医学信号处理仪器可以用于对未知信号和信号未知特性的研究,达到快出成果、多出成果的目的。实际上,虚拟医学信号处理仪器也对当前远程医疗、医学电子图书等热门研究领域将起到推波助澜的作用。
四、虚拟仪器相关技术
1、数值计算
在虚拟仪器中,需要提供灵活的数据处理方法,这些方法可根据实际需要由用户通过编程来实现,为了简化编程的复杂程度和节省大量的开发时间,在虚拟仪器中应当尽可能多的提供各种数值计算程序,这些数值计算主要有以下几大方面:
※ 矩阵运算(加、减、乘、逆、转置)
※ 特征值与特征向量计算
※ 矩阵分解
※ 一元、二元插值
※ 数值积分和微分
※ 线性代数方程求解
※ 非线性方程求解
※ 拟合与逼近
※ 特殊函数
※ 回归与统计
2、数字信号处理
在复杂的仪器中,数字信号处理占有重要的地位,因而在虚拟仪器中集成各种数字信号处理方法十分必要,数字信号处理方法可分为几大类:
※ 信号预处理
※ 滤波器设计与滤波
※ 经典谱估计
※ 现代谱估计
※ 相关与卷积
※ 离散变换
※ 数字特征计算
※ 常用信号发生
※ 信号建模
※ 数据压缩
3、计算机图形、图象学
图形和图象是复杂仪器中大量数据的直观表示,例如静态和动态脑电地形图,物体表面温度分布图,电磁场分布图等,它可把原本十分抽象的数据转换成人们易于理解的直观表示;另外,数据及其分析结果人们也习惯于用曲线、直方图、三维图形、等高线图等来表示。所以在虚拟仪器中,建立这些数据的图形、图象表示模块是十分必要的。
4、科学计算可视化
前面提到,复杂大量数据的图形、图象表示在虚拟仪器中十分重要,然而由数据到图形的映射并不是简单的事情,这就是近年来发展起来的科学计算可视化的研究课题。
科学计算可视化的根本目的是把由实验或数值计算获得的大量数据转换成人的视觉可以感受到的计算机图象。利用图象把大量抽象的数据有机的组织到一起,从而形象、生动地展示数据所表示的内容以及它们之间的相互关系,帮助人们直接把握复杂的全局,更好地发现和认识规律,摆脱复杂大量抽象数据的困惑。虚拟仪器中科学计算可视化的引入,将给人们展示出仪器的无限魅力,使仪器具备处理和分析大量复杂数据的能力。
5、面向对象的可视化编程
虚拟仪器是一个集成编程环境,用它人们可以很快地生成自己所需要的复杂仪器。所以虚拟仪器既要可编程又要操作简单,因而人们把面向对象的可视化图形编程技术引入到虚拟仪器中来。在虚拟仪器中集成了许多功能强大的部件,这些部件用直观的计算机图形表示,每个部件都有相应的可控属性、操作和函数,人们只需把这些部件在计算机屏幕上布置好,设置好相应的属性,以及它与其他部件的连接关系,即可生成构成相应功能的仪器。
五、小结
虚拟仪器是当前国内外刚刚起步的研究领域,许多高技术公司和研究所都看好这一市场应用前景,纷纷投入大量的人力、物力和财力,加紧开发与研究。虚拟仪器是多媒体计算机的一个重要应用领域,是多学科交叉、渗透的产物,其中浓缩了许多高、精、尖的科学技术。虚拟仪器不是仪器却高于仪器,它大大缩短了新型仪器的开发周期,节省了仪器开发的费用,它不仅是开发仪器的工具,而且也是进行科学研究的有力手段。虚拟仪器是仪器计算机化的产物,是集成化仪器的基础,是仪器行业的一场革命,它的研制与开发具有深远的意义。
C. 什么是虚拟仪器虚拟仪器有哪些优势
虚拟仪器是依靠VXI、PXI等标准总线采用驱动器使计算机有控制物理仪器设备的能力。虚拟仪器代表着从传统硬件为主的测试系统到以软件为中心的测试系统的根本性转变。
计算机在测试和自动化领域中的应用,导致了仪器“驱动器”概念的诞生,驱动器又称驱动程序。仪器驱动器是介于计算机与仪器硬件设备之间的软件中间层,由函数库、实用程序、工具套件等组成,是一系列软件代码模块的统称。它驻留在计算机中,是连接计算机和仪器的桥梁和纽带。
优势:
一、性能高
虚拟仪器技术是在PC技术的基础上发展起来的,所以完全“继承”了以现成即用的PC技术为主导的最新商业技术的优点,包括功能超卓的处理器和文件I/O,使您在数据高速导入磁盘的同时就能实时地进行复杂的分析。此外,不断发展的因特网和越来越快的计算机网络使得虚拟仪器技术展现其更强大的优势。
二、扩展性强
NI的软硬件工具使得工程师和科学家们不再圈囿于当前的技术中。得益于NI软件的灵活性,只需更新您的计算机或测量硬件,就能以最少的硬件投资和极少的、甚至无需软件上的升级即可改进您的整个系统。在利用最新科技的时候,您可以把它们集成到现有的测量设备,最终以较少的成本加速产品上市的时间。
三、开发时间少
在驱动和应用两个层面上,NI高效的软件构架能与计算机、仪器仪表和通讯方面的最新技术结合在一起。NI设计这一软件构架的初衷就是为了方便用户的操作,同时还提供了灵活性和强大的功能,使您轻松地配置、创建、发布、维护和修改高性能、低成本的测量和控制解决方案。

相关内容解释:
虚拟仪器技术(Virtual instrument)就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。自1986年问世以来,世界各国的工程师和科学家们都已将NI LabVIEW图形化开发工具用于产品设计周期的各个环节,从而改善了产品质量、缩短了产品投放市场的时间,并提高了产品开发和生产效率。
使用集成化的虚拟仪器环境与现实世界的信号相连,分析数据以获取实用信息,共享信息成果,有助于在较大范围内提高生产效率。虚拟仪器提供的各种工具能满足我们任何项目需要。
D. 虚拟仪器的界面分为哪2个部分
虚拟仪器的组成包括硬件和软件两个基本要素。
1.虚拟仪器的硬件结构虚拟仪器的硬件结构如图所示。硬件是虚拟仪器工作的基础,主要完成被测信号的采集、传输、存储处理和输入/输出等工作,由计算机和I/O接口设备组成。计算机一般为一台PC或工作站,是硬件平台的核心,它包括微处理器、存储器和输入/输出设备等,用来提供实时高效的数据处理工作。I/O接口设备即采集调理部件,包括PC总线的数据采集(DataAcquisition,DAQ)卡、GPIB总线仪器、VXI总线仪器模块、LXI总线仪器模块、串口总线仪器和现场总线仪器模块等标准总线仪器,主要完成被测输入信号的采集、放大和模数转换。根据构成虚拟仪器接口总线的不同,目前虚拟仪器的构成方案主要有基于PC-DAQ卡的虚拟仪器、基于GPIB总线方式的虚拟仪器、基于VXI总线方式的虚拟仪器、基与PXI总线方式的虚拟仪器、基于LXI总线方式的虚拟仪器等类型。无论采用哪种硬件平台的结构形式,计算机与仪器设备之问都是通过总线进行连接的。
2.虚拟仪器的软件结构当虚拟仪器的硬件平台建立起来之后,设计、开发、研究虚拟仪器的主要任务就是编制应用程序。软件是虚拟仪器的关键,通过运行在计算机上的软件,一方面实现虚拟仪器图形化仪器界面,给用户提供一个检验仪器通信、设置仪器参数、修改仪器操作和实现仪器功能的人机接口;另一方面使计算机直接参与测试信号的产生和测量特征的分析,完成数据的输入、存储、综合分析和输出等功能。虚拟仪器的软件一般采用层次结构,包含3部分,即I/O接口软件、仪器驱动程序、应用软件。
E. VEM总线和ISA总线有什么区别
1 总线与仪器的发展 当今信息时代最重要的是对信息的采集、传输、存贮与处理。仪器仪表作为测控系统的主要信息来源与基本手段,数字计算机与仪器、仪表之间实现连接与通信的结构单元――总线的进步,已成为仪器仪表发展的主要标志,由此产生了一系列标准接口总线的变迁。 CAMAC(Computer Automated Measure and Control)是70年代的一种典型测试系统的连接方式,它将各种仪器和接口功能的组件插在标准机箱中,通过数据总线实现连接和通信。但因其功能的局限性,如数据线与当前32位不匹配(24位),模块智能化程度低,软件功能不强,编程繁琐以及电源的电磁兼容性、抗振散热不理想等一系列缺点,限制了系统可靠性的提高。使其逐步被由计算机控制的、有较高传输速率的通用接口总线GPIB(General Purpose Interface Bus)所取代。从此,仪器、仪表从单纯的接收、测试方式转变为数字化的控制、分析、处理、计算与显示输出等多功能应用,从仪器个别电量的测量变为全系统特征参数的系统测量,并在传统时域、频域测量之外加上数据域(data domain)的测试。从而利用计算机软硬件资源,使电子测量由独立的手工操作向组成大规模自动测试系统方向迈进。 在此基础上,NI公司利用HS488协议,使GPIB的数据传输速率提高到ISA总线的1.6Mbps和EISA总线的3.4Mbps,最高达8Mbps。并在吸取CAMAC、GPIB以及工业微机标准总线VME的全部优点后,增加了零槽模块功能、配电、冷却和电磁兼容一系列新特性,推出当今国际上开放式模块系统的新标准总线VXI(VEM Extension for Instrumentation)。 VXI系统一出现就与GPIB有着密切的联系,插于通用计算机的MXI接口板,用MXI电缆NI-VXI/VISA驱动程序与位于VXI零槽的VXI-MXI的模块结合起来成为多系统扩展接口总线,实现多个VXI机箱间的32位数据交互。由于它可直接映射VXI内存空间,从而在提高数据传输速率方面发挥了强大作用。 NI公司还推出一种既具有VXI系统控制功能,又具有一台通用PC全部功能的嵌入式控制器,并进一步应用于VXI自动测试网络的建立。 该公司还开发出一种被誉为“科学家与工程师的语言”的图形化编程平台――LABVIEW,使各领域的专业工程师通过定义和连接代表各种功能模块的图标,从而可方便迅速地建立高水平的应用程序。它由人机界面视窗、方块图视窗及各种工具箱组成,并提供大量针对测试测量和过程控制的仪器面板中的控制对象,使用户可控制编辑器,将现有控制对象修改成适合自己工作领域的控制对象。还可在源代码中的数据流连线上设置探针,在程序运行过程中观察数据流的变化。对用户更为有利的是可调用它所存贮的大量基本函数、字符串函数、文件I/O到高级数字信号处理函数和分析库,以及世界上50多家知名厂商的600多种GPIB仪器、串行口仪器、VXI仪器CAMAC设备的驱动程序,极其方便地帮助组建具有TCP/IP、VDP网络与VI应用系统通信能力和具备利用E-mail、FTP、Web等能力的Internet工具箱的应用系统。 2 虚拟仪器(VI)及其智能化 当前,在各行各业科研、生产领域中,由硬件的软件化、软件的模块化而产生的虚拟仪器(Virtual Instrument, 缩写为VI)因其灵活、高效、易用等一系列优异特性,使其应用范围日益广泛。特别在PLC控制或驱动器的设计中,人们应用指令代替传统的继电器,在通用计算机上安装一组软件或硬件,使用者就如同操作一台自己设计的传统电子仪器。在虚拟系统中,硬件最终只是用于解决信号的输入、输出,特别是对于传感元件,主要依靠计算机软件完成各相应组件的功能,软件成了仪器组成的关键部件,“软件就是仪器”成为对虚拟仪器的形象描述。通过修改软件,可方便地增减仪器系统的功能和规模,虚拟仪器与传统仪器的比较,见表1。 表1目前较为常用的虚拟仪器系统是数据采集系统、GPIB系统、VXI系统(VME在仪器系统领域的扩展)以及它们之间的任意组合。 国内外智能虚拟仪器IVI(Intelligent Virtual Instruments)正在蓬勃兴起。例如IVI应用一系列在人机交互作用下自动生成仪器驱动器代码,自动完成各种状态检查,发现编程错误。可根据用户需要,随意切换各种模式,并在“正常”状态下自动实现多线程同时安全、高速运行,并行测试。且可在强大的仿真功能支持下,不必连接实际仪器,开发测试程序。 又如结合计算机与专用集成电路(ASIC)优点的可重构计算机,不仅可根据不同的计算任务,对大量的可编程逻辑单元阵列(FPGA)作出灵活的相应配置,而且通过指令级、地特级、流水线级以致任务级的并行计算,使运行速度达通用计算机的数百倍以上。更可随机按需高速、远程联系网络上各类仪器,从而为当今电子商务等网络服务的迅速发展以及科技、经济的全球化发展创造了高速、高效和便捷的优越条件。 3 自动测试仪器系统的网络化连接、测量与控制 将仪器与计算机组成网络,可以将各自的资源和潜力得以充分发挥、灵活调用和合理配置。产生1+1>2的组合优势。例如目前连接到Web的数字万用表和示波器,通过因特网读取仪器测量值,使用分布式数据采集系统代替过去单独使用的数据采集设备,甚至可以跨越以太网或其它网络采集数据,实施远程测量。 网络化的测量环境将每台网上计算机和仪器仪表有机地联系在一起。例如在某地采集数据后送往另一需要这些数据的地方,把相同数据按需拷贝多份送往各需要部门;或者定期将测量结果送往远方数据库保存,供需要时随时调用。即使身处异地的不同用户,也可以同时对同一过程进行监控。 接入网络的仪器仪表与计算机软硬件资源、性能差别很大,有的硬盘容量大,有的内存容量宽裕,有些处理器性能优越等。然而一旦组成网络环境,即可对不同的计算机分配不同的任务,不同功能的仪器统一调用,从而使测量系统的性能达到最佳,区别轻重缓急和位置远近统一合理调配,及时应用。人们目前可以控制仪器设备在网上任何地点进行数据采集、分析和显示,Ethernet(以太网)能把各种性能的计算机和各种功能的仪器仪表最有效地连接到同一网络中,以至连接到因特网上,RS232、RS486以及IEEE1394等也可以串行方式将各种仪器与计算机连入串行网络,充分发挥它们各自在通信方面的优势,也可应用局域网(LAN)连接各个自动测试系统,用GPIB-LAN控制多个自动测试系统或用GPIB-LAN控制器(GPIB-ENET)将使用TCP/IP的计算机转换为一个GPIB的讲者/听者/控者,实现完全的GPIB控制器功能和基于以太网的TCP/IP协议。 4 仪器仪表全面智能化 仪器与测量技术和计算机技术的结合,大大提高了测量的精度与自动化水平,随着虚拟仪器的迅猛发展与网络化系统资源的统一优化,为仪器仪表智能化水平的迅速提高,创造了更加优越的条件。融合了计算机、通信和控制(简称3C)技术的现场总线仪器仪表具有智能化测控功能和开放的通信接口,现场总线分布式控制系统将现场实时实地分散完成测量与控制任务,由上位机完成复杂的优化运算、监督和管理,遵循开放的通信标准,实现现场仪器之间,现场仪器与上位机之间高速通信联系,上位机通过网络接口与企业局域网相连,从而实现高度统一、完全集成的企业自动化信息系统,再经由因特网实现全球化连网,获得信息、资源最优化合理调配与共享。 多媒体技术使人机交互界面更加自然、方便、密切,更加强了计算机信息、规则与人脑知识的迅速、密切的交流、补充,特别是虚拟仪器的软件化、模块化,使仪器仪表可根据人的需求,自动、迅速地修改其构成。随着其智能化水平的提高,虚拟现实技术使人脑更深入、更细微地体验对客观规律的认识,纠正经验认识的偏差,更准确地认识利用客观规律,改造客观世界,为人类利益服务。 人们更可利用人工神经网络的自学习、自适应、自组织、并行处理、分布存贮、联想记忆、反馈求精、黑箱映射、权值平衡、动态逼近以及全息容错防失等一系列独特的优越性,使仪器测控系统智能化水平获得更大的提高。 除此之外,当今的智能科技已是分支林立,蓬勃发展。除了神经网络之外,还有模糊逻辑、遗传算法、专家系统、仿人智能、粗糙集理论、物元可拓方法、知识工程、模式识别、定性控制、小波分析、分形系统、混沌理论、数据融合技术等,它们都将使仪器仪表的测控网络系统的智能化提升到一个全新境界。展望仪器仪表产业的明天,必将更加光辉灿烂,中国必将在仪器仪表的虚拟化、网络化、智能化方面为人类作出更大的贡献!
F. 虚拟仪器的组成及其特点是什么
虚拟仪器由硬件平台和软件两部分组成。其中硬件平台又由计算机和硬件接口设备两部分组成。
特点:
与传统仪器相比虚拟仪器具有以下3个特点。
1.不强调物理上的实现形式
虚拟仪器通过软件功能来实现数据采集与控制、数据处理与分析及数据的显示这3部分的物理功能。其充分利用计算机系统强大的数据处理能力,在基本硬件的支持下,利用软件完成数据的采集、控制、数据分析和处理以及测试结果的显示等,通过软、硬件的配合来实现传统仪器的各种功能。
2.在系统内实现软硬件资源共享
虚拟仪器的最大特点是将计算机资源与仪器硬件、DSP技术相结合,在系统内共享软硬件资源。它打破了以往由厂家定义仪器功能的模式,而变成了由用户自己定义仪器功能。使用相同的硬件系统,通过不同的软件编程,就可实现功能完全不同的测量仪器。
3.图形化的软件面板
虚拟仪器没有常规仪器的控制面板,而是利用计算机强大的图形环境,采用可视化的图形编程语言和平台,以在计算机屏幕上建立图形化的软面板来替代常规的传统仪器面板。软面板上具有与实际仪器相似的旋钮、开关、指示灯及其他控制部件。在操作时,用户通过鼠标或键盘操作软面板,来检验仪器的通信和操作。
除上述特点之外,与传统仪器相比,虚拟仪器还有如下几个方面的优势。
(1)虚拟仪器用户可以才艮据自己的需要灵活地定义仪器的功能,通过不同功能模块的组合可构成多种仪器,而不必受限于仪器厂商提供的特定功能。
(2)虚拟仪器将所有的仪器控制信息均集中在软件模块中,可以采用多种方式显示采集的数据、分析的结果和控制过程。这种对关键部分的转移进一步增加了虚拟仪器的灵活性。
(3)由于虚拟仪器关键在于软件,硬件的局限性较小,因此与其他仪器设各连接比较容埸实现。而且虚拟仪器可以方便地与网络、外设及其他应用连接,还可利用网络进行多用户数据共享。
(4)虚拟仪器可实时、直接地对数据进行编辑,也可通过计算机总线将数据传输到存储器或打印机。这样做一方面解决了数据的传输问题,一方面充分利用了计算机的存储能力,从而使虚拟仪器具有几乎无限的数据记录容量。
(5)虚拟仪器利用计算机强大的图形用户界面(GUI),用计算机直接读数。根据工程的实际需要,使用人员可以通过软件编程或采用现有分析软件,实时、直接地对测试数据进行各种分析与处理。
(6)虚拟仪器价格低,而且其基于软件的体系结构还大大节省了开发和维护费用。
G. 什么是总线按总线传输的信息特征可将总线分为哪几类各自的功能是什么
总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,从广义上说,任何连接两个以上电子元器件的导线都可以称之为总线。
它是由导线组成的传输线束, 按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。

(7)虚拟仪器的专用总线包括哪些扩展阅读
总线的数据传输流程
1、申请占用总线
需要使用总线的总线主设备(如CPU、DMA控制器等)向总线仲裁机构提出占用总线的请求,经总线仲裁机构判定,若满足响应条件,则发出响应信号,并把下一个总线传送周期的总线控制权授予申请者。
2、寻址
获得总线控制权的总线主设备,通过地址总线发出本次要访问的存储器和I/O端口的地址,经地址译码选中被访问的模块并开始启动数据转换。
3、传送数据
总线主设备也叫主模块,被访问的设备叫从模块。主模块和从模块之间的操作是由主模块控制在两个从模块之间通过数据总线进行数据传送。
4、结束
主、从模块的信息均从总线上撤除,让出总线,以便其它主模块使用。
H. vxi总线的规范
VXIbus规范是一个开放的体系结构标准,其主要目标是使VXIbus器件之间、VXIbus器件与其它标准的器件(计算机)之间能够以明确的方式开放地通信;使系统体积更小;通过使用高带宽的吞吐量,为开发者提供高性能的测试设备;采用通用的接口来实现相似的仪器功能,使系统集成软件成本进一步降低。
VXIbus规范发布后,由于军方对测控系统的大量需求,许多仪器生产厂商都加入到VXIplug&play(VXI即插即用)联盟。联盟是VXIbus联合体的固有补充机构。联盟通过规定连接器的统一方法、UUT接口和测试夹具、共享存储器通信的仪器协议、可选VXI特性的统一使用方法以及统一文件的编制方法来增加硬件的兼容性,并开发一种统一的校准方法。联盟还通过规定和推广标准系统软件框架来实现系统软件的”plug&play“互换性。
虚拟仪器(VirtualInstrumentation,VI)
虚拟仪器(VitualInstrumentation,VI)最早是适应PC卡式仪器于1986年由NI公司提出的。虚拟仪器技术是仪器技术、通信技术、总线技术、数字化技术、计算机技术等有机结合的产物。这是在标准计算机软硬件基础上加上一组软件和硬件所构成。虚拟仪器从本质上说是一个开放式结构,用通用计算机、DSP信号处理器或其他CPU提供系统管理、信号处理、存储以及显示功能;用数据采集板GP-IB或VXI 总线接口板提供信号获取和控制信号输出,从而实现传统仪器功能。简单地说就是一组完成传统仪器功能的硬件和软件部件。VI通过软件将通用计算机与仪器硬件结合起来,用户可以通过友好的图形界面(通常称为虚拟面板)操作这台计算机,就象在操作自己定义、自己设计的一台单个传统仪器一样。VI透明地将计算机资源和仪器硬件(如A/D、D/A、数字I/0、定时器和信号调理器等)的测试、控制能力结合在一起,通过软件实现地数据的分析处理和表达,从而能更迅速、更经济、更灵活地解决测试问题,并有效地降低了系统组建成本。

I. 虚拟仪器技术的组成部分
虚拟仪器技术的三大组成部分: 软件是虚拟仪器技术中最重要的部份。使用正确的软件工具并通过设计或调用特定的程序模块,工程师和科学家们可以高效地创建自己的应用以及友好的人机交互界面。提供的行业标准图形化编程软件——LabVIEW,不仅能轻松方便地完成与各种软硬件的连接,更能提供强大的后续数据处理能力,设置数据处理、转换、存储的方式,并将结果显示给用户。此外,还提供了更多交互式的测量工具和更高层的系统管理软件工具,例如连接设计与测试的交互式软件SignalExpress、用于传统C语言的LabWindows/CVI、针对微软Visual Studio的Measurement Studio等等,均可满足客户对高性能应用的需求。
有了功能强大的软件,您就可以在仪器中创建智能性和决策功能,从而发挥虚拟仪器技术在测试应用中的强大优势。 专为测试任务设计的PXI硬件平台,已经成为当今测试、测量和自动化应用的标准平台,它的开放式构架、灵活性和PC技术的成本优势为测量和自动化行业带来了一场翻天覆地的改革。
PXI作为一种专为工业数据采集与自动化应用度身定制的模块化仪器平台,内建有高端的定时和触发总线,再配以各类模块化的I/O硬件和相应的测试测量开发软件,您就可以建立完全自定义的测试测量解决方案。无论是面对简单的数据采集应用,还是高端的混合信号同步采集,借助PXI高性能的硬件平台,您都能应付自如。这就是虚拟仪器技术带给您的无可比拟的优势。

J. 虚拟仪器结构原理具体有哪些,系统结构有几层
美国国家仪器(NI)有限公司研究发现:
虚拟仪器是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。灵活高效的软件能创建完全自定义的用户界面,模块化的硬件能方便地提供全方位的系统集成,标准的软硬件平台能满足对同步和定时应用的需求。虚拟仪器的输入输出由数据采集卡、GPIB卡等硬件模块完成,仪器的功能主要由软件构成。一套完整的虚拟仪器系统的结构一般来说分为四层:
1、测试管理层
2、应用(程序)开发层
3、仪器驱动层
4、I/O总线驱动层