导航:首页 > 仪器仪表 > 勒贝格测定仪器能测什么问题

勒贝格测定仪器能测什么问题

发布时间:2022-05-19 18:06:40

❶ 著名的女数学家有哪些

1、希帕蒂娅

希帕提娅是希腊数学家、天文学家以及哲学家。她也通常被认为是史上第一位女数学家。希帕提娅的父亲席昂是一位数学教授;作为她的导师,他教给了希帕提娅许多科学与哲学方面的知识。

约在400年时,希帕提娅成为了亚历山大城中柏拉图学派的领导者,讲授数学、科学以及新柏拉图学派的哲学。遗憾的是,希帕提娅的许多著作在今天已经遗失,所以人们并不知道她对数学的确切贡献。人们只知道她的少数工作,例如对丢番图《算术》的评注。

2、沙特莱侯爵夫人

沙特莱侯爵夫人最著名的工作是艾萨克•牛顿的《自然哲学的数学原理》的法文翻译以及她在动能方而的研究。

她还著有《物理学教程》,讲述科学与哲学方面的最新思想;这本书原本是为她13岁儿子所写的教材。她还对哲学、神学、伦理学有所涉猎,例如她对《圣经》的分析,她对人类幸福的探讨以及她争取女性受教育权的文章。

总的来说,沙特莱侯爵夫人是一位既能取得社会与家庭生活的平衡,又能持续不断地投入到科学研究与写作中的优秀女性。

3、玛丽亚•加埃塔纳•阿涅西

尽管阿涅西对数学做出了许多贡献并展现出巨大潜力,在父亲死后她开始投身于慈善事业。阿涅西的《分析讲义》一书包含了从代数到微积分的讨论;这本为她弟弟所写的书也被认为是第一本由女性所写的数学教科书。

在此书中,还出现了由一种水手结而来、被误译为“阿涅西的女巫”的曲线(方程式为 x⊃2;y = a⊃2;(a-y) ),她的名字也因此被熟知。由于她的杰出工作,阿涅西被任命为博洛尼亚大学的数学与自然哲学系主任,但因为慈善事业的缘故她从未赴任。


4、索菲•热尔曼

热尔曼从此认为几何学是一个值得研究的学科,并决心学习数学;她随后在父亲的图书馆中读了大量的书籍。但热尔曼想尽一切办法反抗并坚持学习,这种情况持续到了她18岁那年,也是巴黎综合理工学院成立的时候。

热尔曼凭借她在振动弹性曲面上的工作赢得了法国科学院的奖项。这也让她跻身当时杰出数学家的圈子。热尔曼也在数论方向有所成就;她把费马大定理归结成两种情形,这在如今被称作索菲•热尔曼定理。在数论中以她的名字命名的结果还有索菲•热尔曼素数以及索菲•热尔曼等式。

5、阿达•洛夫莱斯

洛夫莱斯在这些学科上表现突出,并在数字和语言上颇有天分。年仅13岁的她就设计了一架飞行器。17岁时,洛夫莱斯认识了发明家与数学家查尔斯•巴贝奇,后者成为了她的导师以及终身的朋友。正是因为这段经历,洛夫莱斯才能在科学和数学领域中做出现为人所知的众多贡献。

洛夫莱斯是第一位女计算机程序员(实际上是第一位程序员)。她做出的贡献既体现在数学也体现在计算机理论上。

她最著名的工作是翻译了查尔斯•巴贝奇关于计算机分析机的论文:这个一个由查尔斯•巴贝奇发明的、可以进行数学计算的机器。洛夫莱斯提出了创新性理论并进行了复杂的理论分析。

❷ 光速可以达到每秒约30 万公里,但到了夜晚,四周为何还是漆黑

地球是一个近似球体,而光在均匀介质中沿直线传播。

一般认为微波背景辐射是大爆炸遗迹,不是星体发出的光。另外可观测宇宙是有限的,如果可观测范围的所有星体都以可见光形式在夜空中呈现,也不大可能把夜空填满,“如果我们肉眼是可以看见波长范围极广的电磁波的话那么看宇宙就是一片亮了”也是有点问题的。所谓的漆黑一片只是相对于肉眼对光的感知的描述,光还是有到达的只是太少肉眼分辨不到,不然为啥要借助天文望远镜?我相信在所谓漆黑一片的田野里用精密仪器也是能检测到光辐射的。

有一种说法是:光属于隐性物质(电磁波),这种东西看不见,摸不着,只有与显性物质存在明力影响才能观察到其存在,但现象并不是隐性物质本身,只是它借助或依附于显性物质的特殊状态而显现。当我们遥望远处的空间,其实是在回顾历史,回顾的是那片空间的历史,但不包括正在遥望的你我!假如你能超过光,并且超过宇宙膨胀速度,你可以追上流逝的昨天,但这个昨天仅仅指我们观察到的所谓星空的昨天,而我们和那片星空还在按着时间的正方向流逝。所以好像是爱因斯坦说过的,时间在物理上是没有意义的。

地球大气,太阳系,银河系介质的辐射率/亮度。

关于被照耀星体辐射的问题,一来那个辐射是会均匀地向四面八方传播的,二来它可能引起障碍物星球上的大气环流之类的情况消耗能量,第三十一个亮星如果变成若干颗暗星,会统统被大气层过滤掉。

其实很简单,假设宇宙中只有一个太阳,把它往远推,直到某个距离,人眼看不到为止。在这个距离上,夜空布满恒星有有何用?夜空照样是黑的。而且,我估计我们看不见太阳的距离并不会很远。哪位大神算一算。和宇宙膨胀并没什么关系。孤立地看一个恒星和一个接受光的行星之间的关系,这样的前提是宇宙只有这两个东西,且没有边界,推论错在一亿光年外恒星所发出的那极大一部分你认为地球接收不到的光,会有极大量其他的天体接收,其他天体又会辐射出来这部分能量,在这样的系统下互相交叉吸收辐射,整个夜空就是光亮的。

设想我们地球是观察中心,其他星球的光到达地球,以地球为视界,如果宇宙是无限的,那么视界上每个无限小的点都会有光线到达,无论这个光源距离有多远,都会到达地球,那么夜晚就是亮的,实际上是黑的,也就是说宇宙肯定是有限的。我们只能看到137亿年前从宇宙大爆炸发出的光,这个区域被称为可观测宇宙,而在地球这里,还没有足够多的恒星来照亮夜空,所以我们只能看到光线有机会抵达到地球的那些恒星和星系,这就是夜晚天黑的原因,也就是光速赶不上宇宙膨胀的速度。

❸ 清华大学数学系分数

清华大学数学系山东2015年最低录取分数线是673分,2014年是675分,2013年是669分。
清华大学由中华人民共和国教育部直属,位列“211工程”、“985工程”,入选”珠峰计划“、”2011计划“、”111计划“、”卓越工程师教育培养计划“、”卓越法律人才教育培养计划“、”卓越医生教育培养计划“,是C9联盟、东亚研究型大学协会、环太平洋大学联盟、清华—剑桥—麻省理工学院低碳能源大学联盟成员,中管副部级建制。
截至2014年3月31日,清华大学正在运行的科研机构共322个,其中政府部门批准建立的科研机构共123个,包含国家实验室(筹)1个,重大科技基础设施1个,国家大型科学仪器中心2个,国家重点实验室13个,国家工程实验室7个,国家工程研究中心4个,教育部重点实验室17个,北京市重点实验室13个。

❹ 谁有好作文推荐几篇(高中的)

中国数学家的故事

筹算女杰王贞仪

女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。

17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。

数学会女前辈高扬芝

高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。

高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。

高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。

她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。

高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。

第一位数学女博士徐瑞云

徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。

当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。

徐瑞云有幸被德国著名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。

徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。

完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。

1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名著《实变函数论》。译本于1955年由高等教育出版社出版。

第一位女数学院士胡和生

胡和生于1928年出生在南京市一个艺术世家,祖父和父亲都是画家。她从小耳濡目染,聪明好学,画感、乐感很强,祖父和父亲特别喜欢她。读小学和中学时,她不偏科,文理兼优,这些对她后来从事数学事业帮助很大。

胡和生虽然爱好广泛,但她的理想不是成为一位画家,而是考上大学继续深造。抗战胜利以后,胡和生考进大学数学系,1950年毕业,又报考了浙江大学著名数学家、中国微分几何创始人苏步青教授的硕士研究生。1952年院系调整,苏教授与她转入了上海复旦大学。复旦是以苏步青为首的我国微分几何学派的策源地,人才济济,加之老一辈数学家的鼓励指导,同行的互勉竞争,托着这颗新星冉冉升起。

胡和生长期从事微分几何研究,在微分几何领域里取得了系统、深入、富有创造性的成就。例如,对超曲面的变形理论,常曲率空间的特征问题,她发展和改进了法国微分几何大师嘉当等人的工作。19 60-1965年,她研究有关齐次黎曼空间运动群方面的问题,给出了确定黎曼空间运动空隙性的一般有效方法,解决了六十年前意大利数学家福比尼所提出的问题。她把这个结果,整理在与自己的丈夫谷超豪合著的《齐性空间微分几何》一书中,受到同行称赞。她早期在我国最高学术刊物之一《数学学报》上发表了《共轭的仿射联络的扩充》(1953年)、《论射影平坦空间的一个特征》(1958年)、《关于黎曼空间的运动群与迷向群》(1964年)等重要论文。至今,她发表了七十多篇(部)论文、论著。她在射影微分几何、黎曼空间完全运动群、规范场等研究方面都有很好的建树,成为国际上有相当影响和知名度的女数学家。她的一些成果处于国际领先或国际先进水平。例如,在调和映照的研究中,她撰写的专著《孤立子理论与应用》,发展了“孤立子理论与几何理论”的成果,处于世界领先地位。

1982年,胡和生与合作者获国家自然科学三等奖;1984年起担任《数学学报》副主编,并担任中国数学会副理事长;1989年被聘为我国数学界的“陈省身数学奖”的评委;1992年当选为中国科学院数学物理学部委员(1994年改称院士),至今选出来的数学家院士,只有胡和生一人是女性。

华裔算杰张圣蓉

张圣蓉1948年生于陕西省西安市,出生不久便随父母到台湾居住。她从小聪慧,喜爱读书,对数学情有独钟。张圣蓉中学毕业后考入著名的台湾大学数学系,1970年获学士学位。她不满足于此,又以优异成绩考入美国加利福尼亚大学,攻读数学博士学位。

“函数”是数学中最基本、最重要的概念。一位著名数学家说过“函数概念是近现代数学思想之花”。它的产生、发展实质上反映了近现代数学迅速发展的历程,同时也与函数论、解析数学的发展相辅相成。张圣蓉选择了现代数学的重要前沿分支之一“函数论”作为攻读对象。她的导师是一位著名的函数论世界大师,她要同函数论专家一道去摘取函数论皇冠上的明珠。

1974年,张圣蓉获伯克利加利福尼亚大学博士学位,从此在美国从事函数论的研究工作。她对函数论中复平面上的解析函数、多复变函数以及有界函数的解析函数的逼近等高深领域都有涉猎,1976年,28岁的张圣蓉通过对道格拉斯函数的研究撰写了世人没有发现的这类函数特征的论文,这为第二年著名数学家马歇尔解决著名的道格拉斯猜测铺平了道路。张圣蓉一鸣惊人,1977年又撰写出另一篇令函数论专家惊叹的论文,证明了马歇尔攻克道格拉斯猜测中的一个未发现的难题。在清一色的男数学家主导的函数论领域,她确立了自己的地位。

摘自《女数学家传奇》 徐品方编著 科学出版社2005年1月版 39.50元
回答者: 孤单的帆船 - 见习魔法师 二级 1-5 21:37
-------------------------------------------------------
欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。

欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。

尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。

欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式:
又把三角函数与指数函联结起来。

在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式 中。 欧拉在研究级数时引入欧拉常数C, 这是继π 、e 之后的又一个重要的数。

欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。

欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。

在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。

古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。

同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。

欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论。

正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题——计算慧星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。

他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和慧星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。

自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。

这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支——变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。

作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。

欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了"。一位科学巨匠就这样停止了生命。

历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。

由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉。大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师。"被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。
参考资料:数学是人类思维的体操

❺ 那个好心人有数学家的故事啊

高斯
包含人物[1]和物理单位[2]

[1]人物:
卡尔.弗里德里希.高斯(Carl Friedrich Gauß,1777.4.30~1855.2.23),德国数学家、物理学家和天文学家。
高斯学习非常勤奋,11岁时发现了二项式定理,17岁时发明了二次互反律,18岁时发明了用圆规和直尺作正17边形的方法,解决了两千多年来悬而未决的难题。21岁大学毕业,22岁时或博士学位。1804年被选为英国皇家学会会员。从1807年到1855年逝世,一直担任格丁根大学教授兼格丁根天文台台长。他还是法国科学院和其他许多科学院的院士,被誉为历史上最伟大的数学家之一。他善于把数学成果有效地应用于天文学、物理学等科学领域,又是著名的天文学家和物理学家,是与阿基米德、牛顿等同享盛名的科学家。
高斯出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。

在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。

7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。

在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。

当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。

1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。”

慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。

为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。

1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。

高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。

在处理相片的软件 photoshop 中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶尔会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终於找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…

费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由於钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。

二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。

1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」

在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。

高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关於非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

to preise it would mean to praise myself. 我无法夸赞他,因为夸赞他就等於夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics)一书里曾经这样批评高斯:

在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了

[2]物理单位

高斯(G),非国际通用的磁感应强度单位。为纪念德国物理学家和数学家高斯而命名。

一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位(emu)的稳恒电流(等于10安培)时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。

高斯是很小的单位,10000高斯等于1特斯拉。

补充
高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。
他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。
高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。
高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。
1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。
由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

❻ 历史上比较著名的女数学家有哪些

1.希帕蒂娅(Hypatia,约公元370-415),她出生在埃及亚历山大,是有史记载的第一位女数学家。希帕蒂娅的父亲是当时有名的数学家,一些有名的学者常到她家做客,在他们的影响下,希帕蒂娅对数学充满了兴趣和热情,10岁时她应用相似三角形对应成比例的原理,首创了用一根杆子及其在太阳下的影子来测定金字塔塔高的方法。19岁就读完了欧几里得的《几何原本》和阿基米德的《论球和圆柱》,同年,她乘商船去雅典求学,在求学期间她成为受人景仰的数学家。
学成归国后,她教授数学和哲学。并对阿波罗尼斯的《圆锥曲线论》作了详细的注释,这些研究直到 17世纪才重新引起数学家们的重视。除此之外 ,希帕蒂娅还曾设计过观天仪、流体比重计和压力测试器等仪器。公元415年,遭到宗教的残酷杀害。虽然这样一位为数学的传播和发展作出了卓越贡献的数学家一生短暂,但是她的成就,她高尚的思想之光为后来者照亮了前行之路。

2.爱米丽•布瑞杜尔(Emiliede Breteuil ,1706-1749),法国数学家。她出生在上流社会,父亲是国王路易十四的秘书。12岁的时候,爱米丽就已经精通拉丁文、意大利语、希腊语和德语,此后她接受了科学和文学全方位的教育。1733年,爱米丽认识了伏尔泰,在恋爱过程中,伏尔泰将笛卡儿、莱布尼茨和牛顿的科学思想传达给爱米丽。他们合作翻译了牛顿的《哲学基础》,首次将牛顿的理论介绍给还没有高等数学基础的读者。这期间,爱米丽还把一个房间改装成实验室,进行物理实验,不久后她参加了科学院举行的“火的自然属性”科学论文大赛,她在征文中首次提出了红外线辐射理论。当爱米丽的科学成就开始超越伏尔泰时,他们的关系却走向了下坡路,不久后她出版了《物理学研究》,她把笛卡儿、莱布尼茨和牛顿的三人的科学理论结合起来做了归纳。离开伏尔泰之后,爱米丽又将牛顿的《数学原理》(Principia Mathematical)从拉丁文翻译成法文,翻译版本也是当时最权威的一本。
与她巨大的科学成就对应的,是社会的歧视。法国上流社会中的女性十分嫉妒爱米丽赢得了伏尔泰的爱情,她们常常把她描绘成一个丑陋、粗鲁的女人。在她生命中的最后一年,也就是翻译《数学原理》的同年,她死于难产。在她饱受奚落与误解的一生中,爱米丽依赖她的独立,敢于追求真理和幸福的巨大勇气赢得了科学界的理解和尊重。

3.阿涅西(Maria Gaetana Agnesi,1718—1799) :意大利数学家。她从小便被认为是个天才,在她家里的聚会中,她总是谈及有关逻辑、机械、化学、植物学、动物学、矿物学以及解析几何等这些广泛的话题。11岁时,她已精通各国语言。阿涅泽生性谦虚内向,勤奋好学又具有奉献精神。1738年加入修道会,后来的十四年里,阿涅泽一直专注在数学的领域里,并写了些令人赞赏的作品,为整个哲学和科学世界开启了一扇清新的窗。她最著名的数学作品《分析讲义》,被认为是第一部完整的微积分教科书。教皇贝内迪克特十四世还颁给她一面金牌,以表彰她在数学上的卓越贡献。
1750年,阿涅泽被任命为波洛尼亚大学的数学与自然哲学系的系主任,然而她仅接受他们所授与的荣誉头衔。1751年,阿涅泽正值数学事业的颠峰时期,她却突然停止了所有数学与科学的研究。她一直照顾她父亲直到父亲去逝,接着便担负起照顾和教育她的二十位弟妹之责任。之后,她过着与世隔绝的生活,把她的余年都奉献给了穷苦贫困的人民。

4.玛丽苏菲•热尔曼(Marie-Sophie Germain,1776—1831),法国数学家、物理学家。出身巴黎一个殷实的商人家庭,热尔曼从小热爱数学,但不为家庭所鼓励。身为女性,她被拒于巴黎综合工科学校大门之外,顾虑到当时普遍存在的对女性科学家的成见,她常常不得不以假名和其他数学家(比如拉格朗日和高斯等)通信。热尔曼的求学故事折射出了当时女性求学的困难和自卑。通过不懈的努力,她在声学、弹性的数学理论和数论等方面都取得了出色的成果,
在1816年1月,热尔曼因提出的“弹性表面理论”的优秀论文第一次挑战了拉普拉斯学派而声名大噪。高斯坚持将她推荐给哥廷根的教授团,请求颁授一个荣誉博士学位给她,可惜迟了一步,苏菲於1831 因乳腺癌去逝。

5.奥古斯特•爱达•洛芙莱斯(Augusta Ada Lovlace,1815—1852),英国数学家,是著名诗人拜伦的女儿。虽然爱达•洛芙莱斯的名字在数学史的书上不常见到,但她还是作为世界上最早的计算机程序员而载入史册。人们用她的名字艾达(ADA)作为一种计算机语言的名称就是为纪念这位聪明的数学家。
爱达很小的时候的爱达对数学就有强烈的兴趣和热情,拜伦喜欢称呼她为“平行四边形公主”。10岁那年爱达•洛芙莱斯第一次遇到C•巴贝格,那时她跟着一群成年人去参观他的实验室,那些令人惊奇的机器已成为伦敦社会的一种吸引力。爱达使巴贝格留下了深刻的印象,因为她是参观者中少数几个能对他的机器和他的工作提出有理智和思想深度的问题的人之一。在21岁时她写信给巴贝格,鼓励他在分析机方面的工作并请求他作为自己的导师。一年后她承担了一篇论文《论巴贝格分析机》的翻译任务。她的工作不单是翻译,还包括长达论文三倍的注解。她对机器作了详尽的数学解析,描述了它的部件、开列了其可能的用途。她描述的是一台尚未存在的计算机,在注解中她甚至为这台虚有的机器写下了计算贝努利数的计算机程序,更为重要的是,她为了巴贝格的事业倾注了自己的全部热情。不幸的于1852年罹患了癌症,英年早逝,时仅36岁。

6.柯瓦列夫斯卡娅•索非亚(Vasilyevna Kovalevskaya ,1850—1891),俄国历史上第一位女数学家。卡娅生于莫斯科一个贵族家庭,天性安静温和。17岁时就在彼得堡一位海军学校教师的指导下掌握了微积分。1870年到柏林求学,但当时柏林大学拒收女生,她只好慕名求见名重一时的数学家魏尔斯特拉斯,后者决定单独为她授课达四年之久。哥廷根大学鉴于其出色的工作,未经答辨,便破格授予她博士学位,使她成为历史上第一位女数学博士。
卡娅在38岁时由于对刚体绕定点旋转问题的研究而先后获得法兰西科学院和瑞典科学院的褒奖。刚体旋转问题自欧拉、拉格朗日以来长期停滞不前,法兰西科学院已三次悬赏解决。柯瓦列夫斯卡娅的获奖成为当时的报纸新闻,轰动了巴黎。1889年圣彼得堡科学院选举柯瓦列夫斯卡娅为院士,为此还专门修改了院章中不接纳女性院士的规定。卡娅的一个重要贡献就是对偏微分方程解的存在性和唯一性给出了更一般的结果,现称为柯西-柯瓦列夫斯卡娅定理。不幸的是,一年多以后,她就因患肺炎而在瑞典逝世,年仅41岁。

7.埃米•诺特(Emmy Noether,1882-1935),德国数学家,被誉为抽象代数之母。诺特出生在德国一个犹太人家庭,她通往成功的道路,比别人更加艰难曲折。年少的诺特多才多艺,能歌善舞。 25岁时,她在哥尔丹教授的指导下顺利获得博士学位,不久后凭借数学才能赢得了声誉。1919年6月,她取得哥廷根大学授课资格。在大数学家希尔伯特、韦达等人的力荐,她终于在清一色的男人世界——哥廷根大学中取得了教授称号,从此诺特走上了完全独立的数学之路。
1921年她的经典论文《环中理想论》发表,标志着抽象代数现代化的开端;物理上,她导出了非常关键而且美丽的结果,称为诺特定理。希特勒上台后对犹太人的迫害变本加厉。1929 年,诺特竟然被撵出居住的公寓。1933 年4月,法西斯当局竟然剥夺了诺特教书的权利,将一批犹太教授逐出了校园。后来诺特乘船去了美国,1935 年4月14日不幸死于一次外科手术,年仅53岁。爱因斯坦称赞诺特是“自妇女开始受到高等教育以来最杰出的最富有创造性的数学天才”,诺特的名字,已成为亿万妇女献身科学的象征。

8.玛丽•卡特赖特(Mary Cartwright ,1900—1998),她是一个多才多艺的英国数学家被誉为“混沌理论”的创始人。她的父亲是牧师,在她11岁时才被送往学校学习。玛丽•卡特赖特在中学非常勤奋刻苦,中学毕业之前就已经下定决心终身从事数学研究。1919年10月玛丽顺利进入牛津学习数学,那时整个学校学数学的只有五个女生。在大二时她参加了一个数学会,每天晚上都要和数学家探讨数学难题。大学毕业后任教四年,1930年,她在数论专家哈代指导下拿到了牛津大学博士学位。1935年,她被邀请到剑桥大学讲授数学课程,直到退休。玛丽•卡特赖特是第一位当选英国皇家学会会员的女数学家,后来还担任伦敦数学学会会长一职。玛丽•卡特赖特在教学和研究期间还出版了许多有关数学分析和复变函数方面的书籍。

9.朱莉娅•罗宾逊(Julia Robinson,1918—1985),她出生在美国圣路易斯市,是美国数学会的首位女会长。1936年她进入圣地亚哥大学学习,1939年进入加州大学伯克利分校深造,获得博士学位,在1975年她成为该校教授。朱莉娅的丈夫早年曾是她的数论教授,帮助她打下了非常扎实的数论基础。朱莉娅从1948年起开始涉足研究希尔伯特第十问题,1961年朱莉娅和戴维斯(Davis)以及普特南(Putnan)三人合作发表论文,使这一难题取得关键性突破。1982年,她被选中成为诺特讲席(Noether Lecturer)。与其他女数学家一样,她一生在追求学术的过程中遇到过许多坎坷。朱莉娅幼年时屡患疾病,导致身体虚弱,无法生育,这一点曾使酷爱家庭的她陷入极度的痛苦之中,最终是数学的力量让她渐渐摆脱了痛苦的阴影。

10.沙菲•戈德瓦塞尔(Shafi Goldwasser,1958— ),以色列密码学专家。沙菲•戈德瓦塞尔在纽约出生,1979年获得卡内基梅隆大学数学学士学位,在1983年在加州大学伯克利分校获得计算机科学博士学位,现任教麻省理工大学。戈德瓦塞尔曾两次赢得了哥德尔奖。在2001年,她当选为美国艺术与科学学院院士。2002年沙菲•戈德瓦塞尔曾出席在北京举行的国际数学家大会,并在大会上专门做了一个1小时数学报告。戈德瓦塞尔的研究领域包括复杂性理论,密码和计算数论。2007年被选为国际密码学研究协会研究员。

❼ 数学与应用数学专业的主要课程有哪些

我是吉大数学专业的一名同学,学数学学到头秃的那种,接下来给大家介绍一下数学与应用数学的课程。

主干课程有数学分析、高等代数、空间解析几何、实变函数、复变函数、常微分方程、数学物理方程、泛函分析、微分几何、拓扑学、抽象代数

数学分析、高等代数、空间解析几何这三门课程是在大一上的,是最基础的三门课程,是其他课程的根基,直接点说,就是这三门学不明白,接下来的其他课程将更加学不懂。其中数学分析内容较多,也较为重要,初学可能较为困难,多用些功夫,就会渐入佳境了。下图即为我们院所用的数学分析的教材,也是我们学院老师编著的。

因为我现在是大二下学期,所以对后面的课程还不是特别了解,就不一一为大家介绍了。

最后,我想说,数学各个课程之间关联非常强,大家想学好数学,基础一定要打牢。

阅读全文

与勒贝格测定仪器能测什么问题相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59