① 描述分析仪器性能的参数一般有哪些
分析仪器性能参数一般包含:工作电源、量程范围、分辨性、重复性、再现性、适应环境温度、适应环境湿度、整机功耗、外形尺寸、重量等,分析仪器种类很多,不同类型分析仪器性能参数也有不同。
② 仪器仪表参数中Accuracy、Precision、Repeatability的区别与联系是什么
Accuracy
为精(确)度
Precision
为精密度
Repeatability
为再现性
(Precision)精密度δ:说明仪表指示值的分散性,δ愈小则说明测量愈精密。
(Accuracy)精度τ:说明测量的综合优良程度。在最简单的场合下τ=δ+ε。精度最终是以测量误差的相对值来表示的。
也就是说精度涉及到精密度和另一个正确度ε这两个方面,
正确度ε它说明仪表示值偏差大小的程度。即示值有规则偏离真值的程度。
Repeatability
为再现性。表示在改变了的测量条件下,对同一被测量的测量结果之间的一致性。再现性又称为复现性、重现性。
③ 测量仪表的主要性能指标有哪些
(1)准确度:也称度,即仪表的测量结果接近实值的准确程度。可以用误差或相对误差来表示:
①误差=测量值-真实值
②相对误差=误差/真实值
任何仪表都不能准确地测量到被测参数的真实值,只能力求使测量值接近真实值。在实际应用中,只能是利用准确度较高的标准仪表指示值来作为被测参数的真实值,而测量仪表的指示值与标准仪表的指示值之差就是测量误差。误差值越小,说明测量仪表的可靠性越高。
(2)重现性:是指在测量条件不变的情况下,用同一仪表对某一参数进行多次重复测时,各测定值与平均值之差相对于大刻度量程的百分比。这是仪器、仪表稳定性的重要指标,一般需要在投运时和日常校核时进行检验。
(3)灵敏度:指的是仪表测量的灵敏程度。常用仪表输出的变化量与引起些变化的被测参数的变化量之比来表示。
(4)响应时间:当被测参数发生变化时,仪表指示的被测值总要经过一段时间才能准确地表示出来,这段和被测参数发生变化滞后的时间就是仪表的反应时间。有的用时间常数表示(如热电阻测温),有的用阻尼时间表示(如电流表测电阻)。
(5)零点漂移和量程漂移:是指对仪表确认的相对零点和大量程进行多次测量后,平均变化值相对于量程的百分比。
④ 设备的技术性能指标是指什么
技术性能指标主要包含以下两方面:
1、技术参数包括:尺寸参数、内运动参数与动力参数。
2、技术参容数是其中的一部分,还包括结构、工艺适应性、精度、使用可靠性和宜人性等方面。
通俗地说:性能指标就是硬件参数是衡量这个硬件好坏的指标。

(4)表征仪器性能参数有什么作用扩展阅读:
外存储器的容量
外存储器容量通常是指硬盘容量(包括内置硬盘和移动硬盘)。外存储器容量越大,可存储的信息就越多,可安装的应用软件就越丰富。硬盘容量一般为10G至60G,有的甚至已达到120G[2]。
I/O的速度
主机I/O的速度,取决于I/O总线的设计。这对于慢速设备(例如键盘、打印机)关系不大,但对于高速设备则效果十分明显。例如对于当前的硬盘,它的外部传输率已可达20MB/S、4OMB/S以上。
⑤ 性能参数是什么意思
一般是指某个设备元件,它具有的各种性能能达到什么样的效果
只能这样通俗的和你解释了,
比如我们某个灯泡,多少瓦,额定电流,电压就属于它的性能参数。
⑥ 什么是传感器的静态特性它有哪些性能指标如何用公式表征这些性能指标
传感器的静态特性是指:对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
简单来说就是指检测系统的输入为不随时间变化的恒定信号时,系统的输出与输入之间的关系。
性能指标:线性度、灵敏度、迟滞、重复性、漂移、测量范围、精度、分辨率、阈值、稳定性等等。
下面选几个参数做下介绍:
线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。
灵敏度:灵敏度是传感器静态特性的一个重要指标。其定义为输出量的增量Δy与引起该增量的相应输入量增量Δx之比。它表示单位输入量的变化所引起传感器输出量的变化大小。如果灵敏度S值越大,说明传感器越灵敏。
迟滞:传感器在输入量由小到大(正行程)和输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。也就是说,对于同一大小的输入信号,传感器输出信号的差值即为迟滞。
漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间改变而发生变化的现象,这就是漂移。

(6)表征仪器性能参数有什么作用扩展阅读:
主要作用
人们为了从外界获取信息,必须借助于感觉器官。
而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。
新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。
在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。
在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。
此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。
许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。
传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。
由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。
⑦ 氦质谱检漏仪
转载:《分析测试网络网》
氦质谱检漏仪工作原理与结构和性能试验方法
氮质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。
氦质谱检漏仪是磁偏转型的质谱分析计。单级磁偏转型仪器灵敏度为10-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。
(1)氦质谱检漏仪工作原理与结构
氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。
①单级磁偏转型氦质谱检漏仪
现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪。
在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。
在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可计算。
可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。仪器的B和R是固定的,调节加速电压U 使氦离子束恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me- 1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2,所以被分离出来。(me-1)2=4,即He+的质荷比,除He+之外,C卅很少,可忽略。
②双级串联磁偏转型氦质谱检漏仪
由于两次分析,减少了非氦离子到达收集器的机率。并且,如在两个分析器的中间,即中间缝隙S2与邻近的挡板间设置加速电场,使离子在进入第二个分析器前再次被加速。那些与氦离子动量相同的非氦离子,虽然可以通过第一个分析器,但是,经第二次加速进入第二个分析器后,由于其动量与氦离子的不同而被分离出来。由于二次分离,仪器本底及本底噪声显著地减小,提高了仪器灵敏度。
③逆流氦质谱检漏仪
该类仪器是根据油扩散泵或分子泵的压缩比与气体种类有关的原理制成的。例如,多级油扩散泵对氦气的压缩比为 102;对空气中其它成分的压缩比为lO4~106。检漏时,通过被检件上漏孔进入主抽泵前级部位的氦气,仍有部分返流到质谱室中去,并由仪器的输出指示示出漏气讯号。这就是逆流氦顷质谱检漏仪的工作原理。
(2)氦质谱检漏仪性能试验方法
灵敏度、反应时间、清除时间、工作真空度、极限真空度及仪器入口处抽速是评价氦质谱检漏仪的主要性能指标。
①灵敏度及其校准
氦质谱检漏仪灵敏度,通常指仪器的最小可检漏率。记为qL.min,即在仪器处于最佳工作条件下,以一个大气压的纯氦气为示漏气体,进行动态检漏时所能检测出的最小漏孔漏率。所谓“最佳工作条件”是指仪器参数调整到最佳值,被检件出气少且没有大漏孔等条件。所谓 “动态检漏”是指检漏仪器本身的抽气系统仍在正常抽气。仪器的反应时间不大于3s。所谓“最小可检”是指检漏讯号为仪器本底噪声的两倍时,才能认定有漏气讯号输出。所谓“漏孔漏率”是指一个大气压的干燥空气通过漏孔漏向真空侧的漏气速率。仪器本底噪声,一般指在2min内输出仪表的最大波动量。
如果检漏时用辅助系统抽气(即对示漏氦气有分流)。或用累积法检漏时,给出仪器最小可检氦浓度(即浓度灵敏度)。记为γmin,能较方便地估计检漏效果。
浓度灵敏度校准系统中应用一流量计测出通过针阀2进入仪器的空气流率qL.o,则仪器浓度灵敏度。
②反应时间、清除时间及其测定
反应时间是指仪器节流阀完全开启,本底讯号为零(或补偿到零)时,由恒定的氦流量使输仪表讯号上升到最大值的(1-e-1)倍(即O.63)所需要的时间,记为τR。
清除时间是指输出仪表讯号稳定到最大值后,停止送氦,其讯号下降到最大值的e-1倍(即O.37)所需要的时间,记为τC。
③工作真空、极限真空及入口处抽速
质谱室极限真空,尤其是工作真空及入口处抽速是表征仪器性能的重要参数。利用检漏仪的真空规可以测定仪器的极限真空和工作真空。利用流量计可测定仪器入口处抽速。
朋友可以到行业内专业的网站进行交流学习!
分析测试网络网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址网络搜下就有。
⑧ 运动粘度测定仪有哪些主要功能
运动粘度测定仪功能与特点:1、液晶屏幕,汉字显示,清晰明了,操作简便。2、键盘设定粘度计常数、控制温度值、微调温度值、试验次数等参数,仪器具有记忆功能。3、采用进口传感器,数字PID控温技术,控温范围宽,控温精度高。4、不掉电日历时钟,开机自动显示当前时间。5、网络通讯,遥控、汇表可选功能。6、触摸式感应按键,手感好,使用寿命长。7、实验次数1到6次可调,方便您的实验。8、实验记录可保存,方便以后查看。
长沙卡顿海克尔仪器有限公司产品运动粘度测定仪适用于测定石油产品的粘度。该仪器的机理是:在某一恒定的温度下,测定一定体积的液体在重力下流过一个标定好的玻璃毛细管粘度计的时间,粘度计的毛细管常数与流动时间的乘积,即为该温度下测定液体的运动粘度。
