『壹』 电动式仪表结构和工作原理
指针仪表:累计行驶里程数字表是6个"十进制"的齿轮计数器,整车速度指针表是回个阻尼转速表答,它们共用一个转速输入信号进行换算通过机械传动实现各自的指示功能。
液晶仪表:通过专用的霍耳传感器的开关信号,传输给液晶显示仪表总成上的单片机,对单位时间内车轮转动圈数的计数,能算出整车的行驶时速,对行驶时速和行驶时间相乘,能计算出整车行驶累计里程。

(1)电动式仪表由什么元件组成扩展阅读:
电气测量指示仪表有多种分类方法。如按其工作原理可以分为磁电式、电磁式、电动式、感应式、整流式、静电式、热电式和电子式等;按测量对象可以分为电流表、电压表、瓦时计、功率表、欧姆表、高阻表、相位表、频率表、万用表和电桥等;
按测量电流种类可以分为直流电表、交流电表和交直流两用表等;按仪表外形尺寸可以分为微型、小型、中型、大型和巨型等;按使用方法可以分为固定仪表(主要为板式)和手携式仪表(主要用于实验室)等。
『贰』 电磁式仪表由什么组成
电磁式仪表由硬磁材料组成。
电磁式仪表是由硬磁材料做成;而极掌与铁心则用导磁很高的软磁材料做成。铁心放在极掌之间,并与极掌形成一个磁场均匀的环形气隙。
可动部分由绕在铝框架上的可动线圈、线圈两端的两个半轴、与转轴相连的指针、平衡锤以及游丝所组成。整个可动部分支承在轴承上,线圈位于环形气隙中。

原理:
当可动线圈通以电流以后,在永久磁铁的磁场作用下,产生转动力矩使线圈转动。反作用力矩通常由游丝产生,磁电系仪表的游丝一般有两个,而且两个游丝的绕向相反,游丝一端与可动线圈相连,另一端固定在支架上,它的作用既产生反作用力矩,同时又是将电流引进可动线圈的引线。
以上内容参考网络—磁电系仪表
『叁』 电动系仪表有什么作用吗
磁电系仪表又称动圈式仪表,它是由固定的磁路系统和可动部分组成,它是根据通电线圈在磁场中受电磁力的作用而偏转的原理制成的。当被测电流从轴的一侧螺旋弹簧(又称游丝)流入,经线圈再从轴的另一侧螺旋弹簧流出,形成一个电流通路时,载流导体在磁场中受到电磁力的作用,带动仪表的指针转动,在螺旋弹簧的反力下达到力的平衡。线圈中流过的电流越大,指针的偏转角越大,从而指示出被测量的大小,这种仪表只能测量直流量。 磁电系仪表具有准确度高、灵敏度高、受外界磁场及温度的影响小、功率消耗小、刻度均匀、读数方便等优点,但结构复杂、成本高、过载能力差。
电磁系仪表和磁电仪表一样,也是依靠电磁相互作用的原理制成的,但它的磁场是由被测电流产生的。当被测电流通过线圈时,在线圈的周围产生磁场,该磁场使偏心铁片磁化;铁片在线圈磁场中受力,产生转矩带动轴上的指针转动。此转矩与弹簧产生反作用,力矩平衡使指针确定在某一位置,提示出被测的电气量。当线圈的电流方向改变时,线圈所产生磁场的极性和被磁化的铁片的极性同时改变,因而两者作用力的方向不变,即指针偏转的方向也不变。因此,这种电磁系仪表可用于交直流电路中。电动系仪表(electrodynamic instrument),是指通过一个或多个动圈中的电流和固定线圈中电流的相互作用而工作的一类仪表。由一个或多个测量元件组成。一般用于磁路中没有铁磁材料的仪表。

『肆』 什么仪表由固定的线圈可转动的铁芯及转轴,游丝指针机械调零机构等组成
(电磁式)仪表由固定的线圈,可转动的铁心及转轴、游丝、指针、机械调零机构等组成。
线圈通常指呈环形的导线绕组,最常见的线圈应用有:马达、电感、变压器和环形天线等。电路中的线圈是指电感器。是指导线一根一根绕起来,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。

电感又可分为固定电感和可变电感,固定电感线圈简称电感或线圈。用L表示,单位有亨利(H)、毫亨利(mH)、微亨利(uH),1H=10^3mH=10^6uH。
单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。
单层绕组就是在每个定子槽内只嵌置一个线圈有效边的绕组,因而它的线圈总数只有电机总槽数的一半。单层绕组的优点是绕组线圈数少工艺比较简单;没有层间绝缘故槽的利用率提高;单层结构不会发生相间击穿故障等。
『伍』 电机由哪些部件组成
电机由定子、转子和其它附件组成。不同类型的电机,具体的组成部分会稍有不同内。永磁式直流电动机由定子容磁极、转子、电刷、外壳等组成,定子磁极采用永磁体(永久磁钢),有铁氧体、铝镍钴、钕铁硼等材料。无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。单相异步电动机由定子、转子、轴承、机壳、端盖等构成。

(5)电动式仪表由什么元件组成扩展阅读:
单相串励电动机的定子由凸极铁心和励磁绕组组成,转子由隐极铁心、电枢绕组、换向器及转轴等组成。电磁式直流电动机由定子磁极、转子(电枢)、换向器(俗称整流子)、电刷、机壳、轴承等构成。一般的无刷直流电机本质上属于伺服电机,由同步电机和驱动器构成。变压调速的无刷直流电机是真正意义上的无刷直流电机,它由定子和转子构成。
『陆』 电磁式电器主要由电磁机构和什么构成
你好,电磁式电器由感应线圈和开关接触片两部分组成。感应线圈是直接接在电子线路里的,受电子线路的控制;开关接触片是用来连接并控制比较大功率的负载的(如发光灯管、电动机等设备)。
『柒』 电动式电控动力转向系统由什么组成
液压式动力转向系统由于工作压力和工作灵敏度较高,外廓尺寸较小,因而获得了广泛的应用。在采用气压制动或空气悬架的大型车辆上,也有采用气压动力转向的。但这类动力转向系统的共同缺点是结构复杂、消耗功率大,容易产生泄漏,转向力不易有效控制等。随着微机在汽车上的广泛应用,出现了电动式电子控制动力转向系统,简称电动式EPS。
【组成】
电动式EPS通常由扭矩传感器、车速传感器、电子控制单元(ECU)、电动机和电磁离合器等组成
【原理】
电动式EPS是利用电动机作为助力源,根据车速和转向参数等,由电子控制单元完成助力控制,其原理可概括如下:
当操纵转向盘时,装在转向盘轴上的扭矩传感器不断地测出转向轴上的扭短信号,该信号与车速信号同时输入到电子控制单元。电控单元根据这些输入信号,确定助力扭矩的大小和方向,即选定电动机的电流和转向,调整转向辅助动力的大小。电动机的扭矩由电磁离合器通过减速机构减速增扭后,加在汽车的转向机构上,使之得到一个与汽车工况相适应的转向作用力。
【特点】
电动式EPS有许多液压式动力转向系统所不具备的优点:
(1)将电动机、离合器、减速装置、转向杆等各部件装配成一个整体,这既无管道也无控制阀,使其结构紧凑、质量减轻。一般电动式EPS的质量比液压式EPS质量轻25%左右。
(2)没有液压式动力转向系统所必须的常运转转向油泵,电动机只是在需要转向时才接通电源,所以动力消耗和燃油消耗均可降到最低。
(3)省去了油压系统,所以不需要给转向油泵补充油,也不必担心漏油。
(4)可以比较容易地按照汽车性能的需要设置、修改转向助力特性。 电动式EPS用电动机与启动用直流电动机原理上基本相同,但一般采用永磁磁场。其最大电流一般为3OA左右,电压为DC12V,额定转矩为1ON·m左右。
转向助力用直流电动机需要正反转控制,图 11所示为一种比较简单适用的控制电路。a1、a2为触发信号端。当a1端得到输入信号时,晶体管T3导通,T2得到基极电流而导通,电流经T2、电动机M、T3、搭铁而构成回路,于是电机正转;当a2端得到输入信号时,电流则经T1、M、T4、搭铁而构成回路,电机则因电流方向相反而反转。控制触发信号端电流的大小,就可以控制通过电动机电流的大小。 图 12为单片干式电磁离合器的工作原理图。当图 10滑动可变电阻式扭矩传感器结构电流通过滑环进入电磁离合器线圈时,主动轮产生电磁吸力,带花键的压板被吸引与主动轮压紧,于是电动机的动力经过轴、主动轮、压板、花键、从动轴传递给执行机构。
电动式EPS一般都设定一个工作范围,例如当车速达到45km/h时,就不需要辅助动力转向,这时电动机就停止工作,为了不使电动机和电磁离合器的惯性影响转向系的工作,离合器应及时分离,以切断辅助动力。另外当电动机发生故障时,离合器会自动分离,这时仍可利用手动控制转向。 该系统的电子控制单元具有故障自诊断功能,当电子控制单元检测出系统存在故障时都可显示出相应的故障代码,以便采取相应的措施。当检测出系统的基本部件如扭矩传感器、电动机、车速传感器等出现故障而导致系统处于严重故障的情况下,系统就会使电磁离合器断开,停止转向助力控制,力图确保系统安全、可靠。
『捌』 电工指示仪表按工作原理分为哪几类
按仪表工作原理的不同分为磁电系、电磁系、电动系、感应系等。其他分类:电工仪表按测量对象不同,分为电流表(安培表)、电压表(伏特表)、功率表(瓦特表)、电度表(千瓦时表)、欧姆表等;按被测电量种类的不同分为交流表、直流表、交直流两用表等;
按使用性质和装置方法的不同分为固定式(开关板式)、携带式和智能式;按误差等级不同分为0.1级、0.2级、0.5级、1.0级、1.5级、2.5级和5.0级共七个等级。数字越小,仪表的误差越小,准确度等级较高。
(8)电动式仪表由什么元件组成扩展阅读
对指针式仪表来说,测量机构是它的核心;对数字仪表来说,数字基本表是它的核心。由测量机构进行放射式联想,可将仪表基本概况一览无余。如指示仪表核心→测量机构→五部分装置→四大系仪表→结构、原理、技术特性、使用注意事项、代表物等。
即由指示仪表核心引出测量机构,按照其各部分元件的功能不同进行划分,分为五部分装置。这五部分装置中有三个是力矩装置,由三个力矩的特点及组成元件联想到四大系仪表的结构特点,再由此联想到各类仪表。
参考资料来源:网络——电工仪表
『玖』 什么是仪表一般由哪些部件组成
仪表
yíbiǎo
1.[appearance;bearing looks]∶人的外表
2.[meter]∶各种测定仪
仪表和仪器的区别
仪器是一种组合意义上的机器;里面一般会至少含有几种仪表.
仪表一般只是用来指示数据用
1。温度仪表
玻璃温度计
双金属温度计
压力式温度计
热电偶
热电阻
非接触式温度计
温度控制(调节)器
温度变送器
温度校验仪表
温度传感器
温度测试仪
2。压力仪表
压力计
压力表
压力变送器
差压变送器
压力校验仪表
减压器
胎压计
气压自动调节控制仪器
液压自动调节控制仪器
压力传感器
3。流量仪表
流量计
流量传感器
流量变送器
水表
煤气表
液位变送器
液位继电器
液位计
油表
水位计
液位控制器
计量仪
4。电工仪器仪表
电流表
电压表
电流功率频率表
电流分配
测电笔
断路器
开关
接触器
继电器
接线端子
调压器
电压监测仪
智能电力监测仪
稳压器
兆欧表
钳形表
万用表
电量变送器
电流变送器
镇流器
整流器
5。电子测量仪器
LCR测量仪
物位仪
粘度计
示波器
信号发生器
6。分析仪器
色谱仪
色谱配件
光度计
水分测定仪
天平
热学式分析仪器
射线式分析仪器
波谱仪
物理特性分析仪器
摄影仪器
频谱分析仪
7。光学仪器
光度计
折射仪
滤光片,滤色片
棱镜,透镜
分光仪
色差计
光电子,激光仪器
显微镜
望远镜
放大镜
经纬仪
水准仪
光谱仪
8。工业自动化仪表
控制系统
调节仪器
多功能仪器
加热设备
绕线机
装置
智能仪表
安全栅
变频器
模块
无纸记录仪
探头
放大器
加速度传感器
测速传感器
位移传感器
转速传感器
电流传感器
张力传感器
9。实验仪器
天平仪器
恒温实验设备
真空测量仪器
热量计
培养箱
恒温箱
腐蚀试验箱
硬度计
干燥箱
烘箱
振荡器
搅拌器
离心机
水(油)浴锅
恒温水箱
10。量具
量规
游标卡尺
千分尺
卷尺
百分表
11。量仪
圆度仪
三坐标测量机
气动量仪
12。执行器
电动执行机构
气动执行机构
13。仪器专用电源
直流电源
稳压电源
交流电源
开关电源
不间断电源
逆变电源
14。显示仪表
数字显示仪
15。供应用仪表
计数器
电度表
恒温器
恒压器
抄表系统
计度器
16。通用实验仪器
电热板
电热套
匀浆机
蒸馏器
分散器
捣碎器
17。机械量仪表
测厚仪
高度计
测力仪表
速度测量仪表
18。衡器
定量秤
台秤
轨道衡
计价秤
称重传感器
电子衡
地上衡
皮带秤
吊秤
配料秤
19。行业专业检测仪器
风速风温风量仪
温湿度仪
粉尘测定仪
噪音仪
水质分析检测仪器
酸度计/PH计
电导率仪
极谱仪
采样器
气体分析仪器
照度计
声级计
尘埃粒子计数器
粮食油检测仪器
测汞仪
20。试验设备
拉力试验机
压力试验机
弯曲试验机
扭转试验机
冲击试验机
万能试验机
试验箱
非金属材料试验机
平衡机
无损检测仪器
工艺试验机
力与变形检测仪
汽车试验设备
包装件试验机
疲劳试验机
强度试验机
试验室
振动台
仪表主要性能指标
一、概述
在工程式上仪表性能指标通常用精确度(又称精度)、变差、灵敏度来描述。仪表工校验仪表通常也是调校精确度,变差和灵敏度三项。变差是指仪表被测变量(可理解为输入信号)多次从不同方向达到同一数值时,仪表指示值之间的最大差值,或者说是仪表在外界条件不变的情况下,被测参数由小到大变化(正向特性)和被测参数由大到小变化(反向特性)不一致的程度,两者之差即为仪表变差,如图1-1-1如示。变差大小取最大绝对误差与仪表标尺范围之比的百分比:
变差产生的主要原因是仪表伟动机构的间隙,运动部件的摩擦,弹性元件滞后等。取胜着仪表制造技术的不断改进,特别 是微电子技术的引入,许多仪表全电子化了,无可动部件,模拟仪表改为数字仪表等等,所以变差这个指标在智能型仪表中显得不那么重要和突出了。
灵敏度是指仪表对被测参数变化的灵敏程度,或者说是对被测的量变化的反应能力,是在稳态下,输出变化增量对输入变化增量的比值:
灵敏度有时也称"放大比",也是仪表静特性贴切线上各点的斜率。增加放大倍数可以提高仪表灵敏度,单纯加大灵敏度并不改变仪表的基本性能,即仪表精度并没有提高,相反有时会出现振荡现象,造成输出不稳定。仪表灵敏度应保持适当的量。
然而对于仪表用户,诸如化工企业仪表工来讲,仪表精度固然是一个重要指标,但在实际使用中,往往更强调仪表的稳定性和可靠性,因为化工企业检测与过程控制仪表用于计量的为数不多,而大量的是用于检测。另外,使用在过程控制系统中的检测仪表其稳定性、可靠性比精度更为重要。
二、精确度
仪表精确度科称精度,又称准确度。精确度和误差可以说是孪生兄弟,因为有误差的存在,才有精确度这个概念。仪表精确度简言之就是仪表测量值接近真值的准确程度,通常用相对百分误差(也称相对折合误差)表示。相对百分误差公式如下:
(1-1-3)
式中δ-检测过程中相对百分误差;
(标尺上限值-标尺下限值)--仪表测量范围;
Δx-绝对误差,是被测参数测量值x1和被测参数标准值x0之差。
所谓标准值是精确度比被测仪表高3~5倍的标准表测得的数值。
从式(1-1-3)中可以看出,仪表精度不仅和绝对误差有关,而且和仪表的测量范围有关。绝对误差大,相对百分误差就大,仪表精确度就低。如果绝对误差相同的两台仪表,其测量范围不同,那么测量范围大的仪表相对百分误差就小,仪表精确度就高。精确度是仪表很重要的一个质量指标,常用精度等级来规范和表示。精度等级就是最大相对百分误差去掉正负号和%。按国家统一规定划分的等级有0.005,0.02,0.05,0.1, 0.2,0.35,1.0,1.5,
2.5,4等,仪表精度等级一般都标志在仪表标尺或标牌上,如 , ,0.5等,数字越小,说明仪表精确度越高。
要提高仪表精确度,就要进行误差分析。误差通常可以分为疏忽误差、缓变误差、系统误差和随机误差。疏忽误差是指测量过程中人为造成的误差,一则可以克服,二则和仪表本身没有什么关系。缓变误差是由于仪表内部元器件老化过程引起的,它可以用更换元器件、零部件或通过不断校正加以克服和消除。系统误差是指对同一被测参数进行多次重复测量时,所出现的数值大小或符号都相同的误差,或按一定规律变化的误差,可目前尚未被人们认识的偶然因素所引起,其数值大小和性质都不固定,难以估计,但可以通过统计方法从理论上估计其对检测结果的影响。误差来源主要指系统误差和随机误差。在用误差表示精度时,是指随机误差和系统误差之和。
三、复现性(重复性)
测量复现性是在不同测量条件下,如不同的方法,不同的观测者,在不同的检测环境对同一被检测的量进行检测时,其测量结果一致的程度。测量复现性必将成为仪表的重要性能指标。
测量的精确性不仅仅是仪表的精确度,它还包括各种因素对测量参数的影响,是综合误差。以电动Ⅲ型差压变送器为例,综合误差如下式所示:
(1-1-4)
式中e0-(25±1)℃状态下的参考精度,±0.25%或±0.5%;
e1-环境温度对零点(4mA)的影响,±1.75%;
e2--环境温度对全量程(20mA)的影响,±0. 5%;
e3-工作压力对零点(4mA)的影响,±0.25%;
e4--工作压力对全量程(20mA)的影响,±0.25%;
将e0、e1、e2、e3、e4的数值代入式(1-1-4)得:
这说明0.25级电动Ⅲ变送器测量精度由于温度和工作压力变化的影响由原来的0.25级下降为1.87,说明这台仪表复现性差.它也说明对同一被测的量进行检测时,由于测量条件不同,受到环境温度和工作压力的影响,其测量结果一致的程度差.
若用一台全智能差变送器代替上例中电动Ⅲ型差压变送器,对应式(1-1-4)中的e0=±0.0625%,e1+e2=±0.075%,e3+e4=±0.15%,代入式(1-1-4)得e综=±0.18%,要比电动Ⅲ型差压变送器e综=±1.87%小得多,说明全智能差压变送器对温度和压力进行补偿、抗环境温度和工作压力能力强。可以用仪表复现性来描述仪表的抗干扰能力。
测量复现性通常用不确定度来估计。不确定度是由于测量误差的存在而对被测量值不能肯定的程度,可采用方差或标准差(邓方差的正平方根)表示。不确定度的所有分量分为两类:
A类:用统计方法确定的分量
B类:用非统计方法确定的分量
设A类不确定度的方差为si2(标准差为si),B类不确定度假定存在的相应近似方差为ui2(标准差为(ui),则合成不确定度为:
(1-1-5)
四、稳定性
在规定工作条件内,仪表某些性能随时间保持不变的能力称为稳定性(度)。仪表稳定性是化工企业仪表工十分关心的一个性能指标。由于化工企业使用仪表的环境相对比较恶劣,被测量的介质温度、压力变化也相对比较大,在这种环境中投入仪表使用,仪表的某些部件随时间保持不变的能力会降低,仪表的稳定性会下降。徇或表征仪表稳定性现在尚未有定量值,化工企业通常用仪表零漂移来衡量仪表的稳定性。仪表投入运行一年之中零位没有漂移,相反仪表投入运行不到3个月,仪表零位就变了,说明仪表稳定性不好。仪表稳定性的好坏直接关系到仪表的使用范围,有时直接影响化工生产,仪表稳定性不好造成的影响往往双仪表精度下降对化工生产的影响还要大。仪表稳定性不好仪表维护量也大,是仪表工最不希望出现的事情。
五、可靠性
仪表可靠性是化工企业仪表工所追求的另一重要性能指标。可靠性和仪表维护量是相反相成的,仪表可靠性高说明仪表维护量小,反之仪表可靠性差,仪表维护量就大。对于化工企业检测与过程控制仪表,大部分安装在工艺管道、各类塔、釜、罐、器上,而且化工生产的连续性,多数有毒、易燃易爆的环境,这些恶劣条件给仪表维护增加了很多困难,一是考虑化工生产安全,二是关系到仪表维护人员人身安全,所以化工企业使用检测与过程控制仪表要求维护量越小越好,亦即要求仪表可靠性尽可能地高。
随着仪表更新换代,特别 是微电子技术引入仪表制造行业,使仪表可告性大大提高。仪表生产厂商对这个性能指标也越来越重视,通常用平均无故障时间MTBF来描述仪表的可靠性。一台全智能变送器的MTBF比一般非智能仪表如电动Ⅲ变送器要高10倍左右,它可高达100~390年。