导航:首页 > 阀门知识 > 管道阀门的有限元求解过程

管道阀门的有限元求解过程

发布时间:2023-04-30 19:07:09

A. 供水管道阀门的安装位置以及种类的介绍

供水管道阀门是一种在我们的日常生活中非常的常见的产品,这种产品的使用使得我们的生活变得更加的便捷,也使得我们的日常用水的使用体验大大的提高。供水管道阀门的安装是很有技巧的,一般都是有特定的安装部位的,而供水管道阀门的种类也是非常的多的。下面小编就来给大家介绍一下供水管道阀门的种类有哪些,以及供水管道阀门的安装位置。

供水管道阀门的种类

闸阀也叫闸板阀,是一种广泛使用的阀门。它的闭合原理是闸板密封面与阀座密封面高度光洁、平整一致,相互贴合,可阻止介质流过,并依靠顶模、弹簧或闸板的模形,来增强密封效果。它在管路中主要起切断作用。

截止阀,也叫截门,是使用最广泛的一种阀门,它之所以广受欢迎,是由于开闭过程中密封面之间摩擦力小,比较耐用,开启高度不大,制造容易,维修方便,不仅适用于中低压,而且适用于高压。

蝶阀也叫蝴蝶阀,顾名思义,它的关键性部件好似蝴蝶迎风,自由回旋。蝶阀具有轻巧的特点,比其他阀门要节省材料,结构简单,开闭迅速,切断和节流都能用,流体阻力小,操作省力。蝶阀,可以做成很大口径。能够使用蝶阀的地方,最好不要使闸阀,因为蝶阀比闸阀经济,而且调节性好。目前,蝶阀在热水管路得到广泛的使用。

球阀的工作原理是靠旋转阀恋来使阀门畅通或闭塞。球阀开关轻便,体积小,可以做成很大口径,密封可靠,结构简单,维修方便,密封面与球面常在闭合状态,不易被介质冲蚀,在各行业得到广泛的应用。

供水管道阀门的安装位置

给水管道如下位置安装阀门:

1、引入管段上;

2、居住小区室外环状管网的节点处,应按分隔要求设置;

3、从居住小区给水干管上接出的支管起端或介入管起端;

4、入户管、水表前和各分支立管室内给水管道向住户、公用卫生间等接出的配水管起端;

5、配水支管上配水点在3个及3个以上时应设置;

6、水池、水箱、加压泵房、加热器、减压阀、管道倒流防止器等处。

供水管道阀门的种类有哪些,以及供水管道阀门的不同种类的阀门的特点是什么,还有就是供水管道阀门的安装位置,这些小编都已经在上文中给大家做了详细的介绍了。供水管道阀门的大小以及类型是非常的丰富的,这个主要是供水管道阀门的使用范围是非常的大的,所以需要非常多的供水管道阀门,来适应不同情况下供水管道阀门的使用环境。

B. 用有限元法求解弹性力学问题时有哪三个步骤

1、 前处理(将结构离散化冲升为有限个单元,求出各个单元刚度矩阵元素并组装求得总体刚度矩阵;)
2、 求解;解算前处理所列出的以单元节点位移为帆判敏基本未知量的方程组;
3、 后处态枝理;通过求解过程得到未知量的值后,导出应力、应变等结果.

C. 一般的杆件结构有限元法得到的解是近似解还是准确解,为什么

它将求解域看成是由许多称为有限耐察元的小的互连子域组成,对每一单元假定一个合适的 (较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解.这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替.由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段. 有限元是那些集合在一起能够表示实际连续域的离散单元.有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事.有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣.经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法. 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中.20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况.不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题蠢明中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一. 对于不同物理性昌档茄质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同.有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域. 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分.显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一. 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式. 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵). 为保证问题求解的收敛性,单元推导有许多原则要遵循.对工程应用而言,重要的是应注意每一种单元的解题性能与约束.例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解. 第五步:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件.总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处. 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组.联立方程组的求解可用直接法、选代法和随机法.求解结果是单元结点处状态变量的近似值.对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算. 简言之,有限元分析可分成三个阶段,前处理、处理和后处理.前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果.

D. ANSYS12.0有限元分析完全手册的目 录

第1章 有限单元法和ANSYS简介 15
本章主要介绍有限单元法的基本思想、有限单元法的基本模型,以及使用有限单元法进行产品分析的基本步骤。ANSYS作为应用最广泛的有限元分析软件之一,已经发展到12.0版本。本章介绍了ANSYS 12.0新功能和特点、ANSYS 12.0的安装和配置、ANSYS 12.0主菜单、ANSYS 12.0帮助系统等内容。
1.1 有限单元法简介 15
1.1.1 有限单元法的基本思想 15
1.1.2 有限单元法的基本模型 17
1.1.3 有限单元法的分析步骤 18
1.2 ANSYS功能和特点 19
1.2.1 ANSYS的发展历程 19
1.2.2 ANSYS的主要功能 20
1.2.3 ANSYS 12.0版本的新特点 22
1.3 ANSYS 12.0的安装和配置 25
1.3.1 ANSYS 12.0的安装 26
1.3.2 ANSYS 12.0的启动 32
1.3.3 ANSYS 12.0的运行环境配置 33
1.4 ANSYS程序结构 33
1.4.1 ANSYS文件格式 33
1.4.2 处理器 34
1.4.3 图形输入 34
1.4.4 分析文件类型 34
1.5 ANSYS 12.0用户界面基本组成 34
1.5.1 启动ANSYS 12.0用户界面 34
1.5.2 对话框及其控件 35
1.6 ANSYS 12.0通用菜单 37
1.7 输入窗口 38
1.8 ANSYS 12.0主菜单简介 38
1.9 工具条 39
1.10 输出窗口(OUTPUT WINDOW) 40
1.11 图形窗口(GRAPHICS WINDOW) 40
1.12 个性化界面 42
1.13 ANSYS 12.0帮助系统 43
1.14 小结 44
第2章 ANSYS分析基本过程 45
本章主要介绍包括分析问题、创建有限元模型、施加载荷进行求解和查看结果的典型ANSYS分析过程,以及在分析过程中经常会使用到的一些命令。最后通过一个工字钢悬臂梁的分析实例演示了ANSYS的分析流程。
2.1 分析问题 45
2.2 建立有限元模型 46
2.2.1 建立和修改工作文件名或标题 47
2.2.2 定义单元类型 47
2.2.3 定义材料特性数据 49
2.2.4 创建实体模型 49
2.2.5 对实体模型进行网格划分 49
2.3 施加载荷 50
2.3.1 定义分析类型和设置分析选项 50
2.3.2 施加载荷 51
2.4 进行求解 52
2.4.1 求解器的类别 52
2.4.2 求解检查 53
2.4.3 求解的实施 53
2.4.4 求解会碰到的问题 54
2.5 后处理 54
2.6 分析过程中常用到的命令 55
2.6.1 起始层命令 55
2.6.2 前处理命令 55
2.6.3 求解命令 56
2.6.4 一般后处理命令 57
2.7 工字钢悬臂梁分析实例 58
2.7.1 分析问题 58
2.7.2 建立有限元模型 59
2.7.3 施加载荷 62
2.7.4 进行求解 63
2.7.5 后处理 64
2.8 小结 66
第3章 建立实体模型 67
本章主要介绍如何通过IGES、SAT、STEP和PARASOLID等中间文件格式或者图形转换界面,将CAD模型直接导入至ANSYS中。
3.1 实体建模概述 67
3.2 导入CAD软件创建的实体模型 68
3.2.1 图形交换数据格式 68
3.2.2 IGES格式实体的导入 68
3.2.3 SAT格式实体的导入 70
3.2.4 Parasolid格式实体的导入 71
3.2.5 STEP格式的导入 71
3.2.6 导入SolidWorks中创建的叶片模型 72
3.2.7 导入UG绘制的轴承模型 73
3.2.8 导入SolidEdge中绘制的联轴器模型 74
3.3 对输入模型的修改 75
3.4 ANSYS环境内直接建模方法 75
3.4.1 自上而下创建几何模型 75
3.4.2 自下而上建模几何模型 76
3.5 坐标系简介 76
3.5.1 总体和局部坐标系 76
3.5.2 显示坐标系 79
3.5.3 节点坐标系 82
3.5.4 单元坐标系 83
3.5.5 结果坐标系 84
3.6 工作平面的使用 84
3.6.1 定义一个新的工作平面 85
3.6.2 控制工作平面的显示和样式 85
3.6.3 移动工作平面 85
3.6.4 旋转工作平面 86
3.6.5 还原一个已定义的工作平面 86
3.6.6 工作平面的高级用途 87
3.7 自底向上创建几何模型 90
3.7.1 关键点 90
3.7.2 硬点 92
3.7.3 几何元素——线 95
3.7.4 几何元素——面 102
3.7.5 几何元素——体 107
3.8 自顶向下创建几何模型 114
3.8.1 创建面体素 114
3.8.2 创建实体体素 116
3.9 使用布尔操作来构建复杂几何模型 119
3.9.1 布尔运算的设置 119
3.9.2 布尔运算之后的图元编号 120
3.9.3 交运算 120
3.9.4 两个实体相交操作 122
3.9.5 两个实体相加操作 122
3.9.6 两个实体相减操作 124
3.10 小结 125
第4章 有限元网格划分与模型建立 126
本章将讲解自由网格和映射网格的基本概念、有限元网格划分的主要指导思想、有限元网格划分的基本方法、有限元单元属性的设定方法、有限元网格划分过程和有限元网格划分的控制方法等内容,最后给出了轴承座零件划分网格的实例。
4.1 网格类型和应用场合 126
4.2 有限元网格划分的主要指导思想 128
4.3 有限元网格划分的基本方法 129
4.4 有限元单元属性的设定 130
4.4.1 选择单元类型 130
4.4.2 单元设置 132
4.4.3 材料属性设定 132
4.4.4 单元坐标系设定 133
4.5 有限元网格划分的控制方法 133
4.5.1 有限元网格划分工具 134
4.5.2 选择自由或映射网格划分 134
4.5.3 单元属性分配设置 135
4.5.4 单元尺寸控制 136
4.5.5 局部网格划分控制 137
4.5.6 内部网格划分控制 138
4.5.7 细化网格控制 139
4.5.8 网格质量控制 140
4.5.9 细小结构的网格划分 140
4.6 实体模型的网格划分 140
4.6.1 映射网格划分方法 141
4.6.2 划分实体模型 141
4.6.3 有限元模型的修改 142
4.7 直接生成有限元模型 144
4.7.1 节点 144
4.7.2 单元 150
4.7.3 通过节点和单元生成有限元模型 152
4.8 生成有限元模型实例 157
4.9 小结 168
第5章 施加载荷 169
本章在实体建立和网格划分的基础上,主要介绍了载荷的基本概念、载荷步、子步和迭代的概念、载荷的分类、加载方法、加载控制、如何针对不同的分析类型完成载荷的加载过程。
5.1 概述 169
5.1.1 载荷的定义 169
5.1.2 载荷施加的对象 170
5.1.3 载荷步、子步和平衡迭代 171
5.1.4 时间参数 171
5.2 载荷的初始设置 172
5.2.1 均布温度和参考温度 172
5.2.2 面载荷梯度 173
5.2.3 重复加载方式 173
5.2.4 设定载荷步选项 174
5.3 载荷的分类 175
5.3.1 自由度约束 175
5.3.2 集中力载荷 177
5.3.3 面载荷 178
5.3.4 体载荷 180
5.3.5 阶跃载荷 181
5.3.6 坡道载荷 182
5.3.7 其他载荷 182
5.4 载荷的施加和操作 183
5.4.1 利用表格来施加载荷 183
5.4.2 利用函数来施加载荷 183
5.4.3 修改载荷 184
5.4.4 删除载荷 184
5.4.5 其他操作 185
5.5 实例 186
5.5.1 单载荷步的施加 186
5.5.2 多载荷步的施加 188
5.6 小结 192
第6章 求解 193
本章主要介绍ANSYS的求解类型、求解控制和求解过程,并给出了求解实例。
6.1 求解设置 193
6.1.1 新分析 194
6.1.2 求解控制 194
6.2 求解过程处理 196
6.2.1 求解概述 196
6.2.2 求解当前载荷步 196
6.2.3 根据载荷步文件求解 197
6.2.4 多载荷步求解 197
6.2.5 重新启动分析 199
6.2.6 预测求解时间 201
6.3 实例 203
6.3.1 恢复文件 203
6.3.2 求解 203
6.4 小结 204
第7章 通用后处理器 205
本章主要对后处理的基本概念、后处理可以处理的数据类型、图形显示分析计算结果及列表显示计算结果的方法进行了介绍,最后给出了一个综合实例。
7.1 概述 205
7.1.1 通用后处理器 206
7.1.2 时间-历程后处理器 206
7.1.3 结果文件读入通用后处理器 207
7.1.4 查看结果数据集 208
7.1.5 设置结果输出方式 208
7.1.6 设置图形显示方式 209
7.2 图形显示计算结果 209
7.2.1 结果查看器 210
7.2.2 查看和分析变形图 210
7.2.3 查看和分析等值线图 211
7.2.4 查看和分析矢量图 213
7.2.5 基于单元表的结果图形 214
7.2.6 载荷组合及其运算结果显示 216
7.3 列表显示计算结果 218
7.3.1 结果数据集汇总列表(Detailed Summary) 219
7.3.2 迭代汇总信息 (Iteration Summary) 219
7.3.3 排序列表(Sorted Listing) 220
7.4 综合实例 220
7.4.1 单载荷步求解结果查看 221
7.4.2 多载荷步求解结果查看 224
7.5 小结 227
第8章 时间-历程后处理器 228
本章主要介绍时间-历程后处理器的概况和使用方法,最后给出使用实例。
8.1 概述 228
8.1.1 时间-历程后处理器的作用 228
8.1.2 使用时间-历程后处理器的基本步骤 230
8.2 进入时间-历程后处理器 230
8.2.1 交互方式 230
8.2.2 批处理方式 232
8.3 时间-历程变量观察器 233
8.4 绘制时间-变量曲线 235
8.5 数据的输入和输出 236
8.5.1 数据的输入 237
8.5.2 数据的输出 237
8.6 综合实例 238
8.6.1 恢复文件 238
8.6.2 查看结果 239
8.7 小结 241
第9章 静力学分析 242
本章将系统地介绍结构静力学分析的内容,包括线性静力学问题中各种类型的工程实例,如平面应力、应变问题,轴对称问题,以及梁、桁架、壳等模型的分析问题,通过这些实例进行具体的分析求解,让读者能熟悉静力学中各种模型的分析思路和求解方法,并掌握ANSYS分析静力学问题的基本步骤。
9.1 静力学分析简介 242
9.1.1 静力学分析类型 242
9.1.2 静力学分析步骤 243
9.2 平面应力问题分析 244
9.2.1 问题描述 245
9.2.2 问题分析 245
9.2.3 求解过程和分析结果 246
9.3 平面应变问题分析 256
9.3.1 问题描述 257
9.3.2 问题分析 257
9.3.3 求解过程和分析结果 257
9.4 轴对称问题分析 266
9.4.1 问题描述 266
9.4.2 问题分析 266
9.4.3 求解过程和分析结果 267
9.5 梁分析 275
9.5.1 问题描述 275
9.5.2 问题分析 276
9.5.3 求解过程和分析结果 276
9.6 桁架分析 282
9.6.1 问题描述 283
9.6.2 问题分析 283
9.6.3 求解过程和分析结果 283
9.7 壳分析 292
9.7.1 问题描述 293
9.7.2 问题分析 293
9.7.3 求解过程和分析结果 294
9.8 接触分析 302
9.8.1 问题描述 302
9.8.2 问题分析 302
9.8.3 求解过程和分析结果 303
9.9 小结 325
第10章 结构动力学分析 326
本章主要介绍结构动力学分析基本过程、运用ANSYS 软件对模态分析、谐响应分析、瞬态动力学分析和谱分析等各种动力学的实际问题进行分析的过程、步骤、技巧与方法。
10.1 结构动力学分析基本过程 326
10.1.1 模态分析 327
10.1.2 谐响应分析 330
10.1.3 瞬态动力学分析 333
10.1.4 谱分析 336
10.2 模态分析实例 340
10.2.1 问题描述 340
10.2.2 问题分析 340
10.2.3 求解过程和分析结果 340
10.3 谐响应分析 353
10.3.1 问题描述 353
10.3.2 问题分析 354
10.3.3 求解过程和分析结果 354
10.4 响应谱分析 364
10.4.1 问题描述 364
10.4.2 问题分析 365
10.4.3 求解过程和分析结果 365
10.5 瞬态动力学分析 374
10.5.1 问题描述 375
10.5.2 问题分析 375
10.5.3 求解过程和分析结果 375
10.6 小结 385
第11章 非线性分析 386
本章将介绍非线性分析基本过程,包括结构非线性分析、几何非线性分析、材料非线性分析、状态非线性分析等几种典型的非线性分析的基本概念,针对每种分析类型结合实例详细介绍了ANSYS中的非线性分析过程。
11.1 非线性分析基本过程 386
11.1.1 结构非线性分析 387
11.1.2 几何非线性分析 387
11.1.3 材料非线性分析 388
11.1.4 状态非线性分析 388
11.1.5 非线性分析步骤 388
11.2 几何非线性分析 396
11.2.1 问题描述 397
11.2.2 问题分析 397
11.2.3 建立模型 398
11.2.4 定义边界条件并求解 404
11.2.5 查看结果 406
11.3 材料非线性分析 410
11.3.1 问题描述 411
11.3.2 问题分析 411
11.3.3 建立模型 411
11.3.4 定义边界条件并求解 416
11.3.5 查看结果 419
11.4 状态非线性分析 422
11.4.1 问题描述 423
11.4.2 问题分析 423
11.4.3 建立模型 423
11.4.4 定义边界条件并求解 430
11.4.5 查看结果 432
11.5 小结 437
第12章 热分析 438
本章主要介绍热分析的基本概念、传热学经典理论、三种基本热传递方式等热分析基础知识、热分析的基本过程;热—结构耦合分析、热—应力耦合分析内容和实例。
12.1 热分析基础知识 438
12.1.1 热分析符号与单位 438
12.1.2 传热学经典理论 439
12.1.3 三种基本热传递方式 439
12.1.4 热分析材料基本属性 441
12.1.5 边界条件与初始条件 442
12.1.6 热载荷 443
12.1.7 稳态与瞬态热分析 444
12.1.8 线性与非线性热分析 445
12.2 热分析介绍 445
12.2.1 热分析简介 445
12.2.2 热分析的类型 445
12.2.3 热分析的基本过程 446
12.3 热—结构耦合分析 447
12.3.1 问题描述 447
12.3.2 问题分析 448
12.3.3 建立模型 448
12.3.4 定义边界条件并求解 456
12.3.5 查看结果 460
12.4 热—应力耦合分析实例 464
12.4.1 问题描述 464
12.4.2 问题分析 464
12.4.3 建立模型 465
12.4.4 定义边界条件并求解 471
12.4.5 查看结果 478
12.5 小结 480
第13章 ANSYS新界面WORKBENCH环境 481
本章主要介绍ANSYS新界面Workbench集成环境的基本情况,如何基于ANSYS 12.0版本的“项目视图(Project Schematic View)”功能,将整个仿真流程的建立模型,划分网格,求解和查看结果更加紧密的组合在一起,通过简单的拖拽操作即可完成复杂的多物理场分析流程。
13.1 ANSYS WORKBENCH概述 481
13.1.1 ANSYS Workbench产品设计流程 482
13.1.2 ANSYS Workbench文件格式 484
13.2 ANSYS WORKBENCH安装和启动配置 485
13.2.1 ANSYS 12.0 Workbench 启动 485
13.2.2 ANSYS 12.0 Workbench 配置 486
13.2.3 ANSYS 12.0 Workbench帮助资源 488
13.3 静力学分析实例 489
13.3.1 问题描述 489
13.3.2 问题分析 489
13.3.3 建立模型 489
13.3.4 定义边界条件并求解 495
13.3.5 查看结果 498
13.4 结构动力学分析实例 500
13.4.1 问题描述 501
13.4.2 问题分析 501
13.4.3 建立模型 501
13.4.4 定义边界条件并求解 506
13.4.5 查看结果 508
13.5 热力学分析实例 508
13.5.1 问题描述 508
13.5.2 问题分析 509
13.5.3 建立模型 509
13.5.4 定义边界条件并求解 512
13.5.5 查看结果 513
13.6 小结 515
附录A ANSYS使用常见问题 516

E. 在有限元法求解过程中,单元的节点力、单元节点上的外荷载(外力)、单元的应力(内力 )之间的关系是是么

(早猛1)单元的节点力是指的单元在节点位拍咐置的内力,是这个单元在节点位置受到的其他单元(与这个节点相连)对这个单元的作用力和外力之和,对于这个单元而言也等于单元本身在节点位置受到的外荷载;
(2)单元节点上的外荷载,是外力,这个节点可能是多个单元的节点,上面(1)中所有单元在的节点力的合力是同这个外荷载平衡的;
(3)单元的应力是力学的概念,单位面积的力,通过对单元应力的积分可以得到单元的节点力。如果是均匀受拉的杆单元,单元力=应陆贺桥力*单元横截面积。

不知道我说清楚了没有,举个例子,如有2个单元(单元编号是1和2)共用同一个节点(1)
节点(1)上作用一个20N的竖向力,这个力就是节点的外荷载。
如果根据分析,单元1受到12N竖向力,单元2受到是8N竖向力,这2个力就是单元的节点力。当然如果有方向,这2个力需要进行矢量相加等于外荷载。如果单元1的面积是10平方毫米,单元2是4平方毫米,那么单元1的应力是12/10=1.2Mpa,单元2的应力=8/4=2MPa.
这是杆系有限元的概念,如果是实体单元那么应力计算要通过形函数和本构关系进行。

F. 管道阀门里怎么来分类啊。大概可以分几个大类啊。

管道的阀门大来小按公称通径分源类:
1)小通径阀门:公称通径dn≤40mm的阀门。
2)中通径阀门:公称通径dn为50~300mm的阀门。
3)大通径阀门:公称阀门dn为350~1200mm的阀门。
4)特大通径阀门:公称通径dn≥1400mm的阀门。
阀门的零部件在组装前必须经过以下过程处理:
1、根据加工要求,部分零部件需要做抛光处理,表面不能有加工毛刺等;
2、所有零部件进行脱脂处理;
3、脱脂完成后进行酸洗钝化,清洗剂不含磷;
4、酸洗纯化后用纯净水冲洗干净,不能有药剂残留,碳钢部件省去此步骤;
5、逐个零部件用无纺布进行擦干,不能有线毛等留存部件表面,或者用洁净的氮气进行吹干;
6、用无纺布或者精密滤纸沾分析纯酒精对逐个零部件进行擦拭,直至没有脏色。

阅读全文

与管道阀门的有限元求解过程相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59