1. (简答)卢瑟福的a粒子散射试验 中能得出金箔原子结构的那些结论
http://ke..com/view/44749.htm
结果:大多数散射角很小,约1/8000散射大于90°; 极个别的散射角等于180°。
结论:正电荷集中在原子中心。
卢瑟福从1909年起做了著名的α粒子散射实验,实验的目的是想证实汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据。在此基础上,卢瑟福提出了原子核式结构模型。
为了要考察原子内部的结构,必须寻找一种能射到原子内部的试探粒子,这种粒子就是从天然放射性物质中放射出的α粒子。卢瑟福和他的助手用α粒子轰击金箔来进行实验,图14-1是这个实验装置的示意图。
在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束很细的射线射到金箔上。当α粒子穿过金箔后,射到荧光屏上产生一个个的闪光点,这些闪光点可用显微镜来观察。为了避免α粒子和空气中的原子碰撞而影响实验结果,整个装置放在一个抽成真空的容器内,带有荧光屏的显微镜能够围绕金箔在一个圆周上移动。
实验结果表明,绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生了较大的偏转,并有极少数α粒子的偏转超过90°,有的甚至几乎达到180°而被反弹回来,这就是α粒子的散射现象。
发生极少数α粒子的大角度偏转现象是出乎意料的。根据汤姆孙模型的计算,α粒子穿过金箔后偏离原来方向的角度是很小的,因为电子的质量不到α粒子的1/7400,α粒子碰到它,就像飞行着的子弹碰到一粒尘埃一样,运动方向不会发生明显的改变。正电荷又是均匀分布的,α粒子穿过原子时,它受到原子内部两侧正电荷的斥力大部分相互抵消,α粒子偏转的力就不会很大[图14-2(a)]。然而事实却出现了极少数α粒子大角度偏转的现象。卢瑟福后来回忆说:“这是我一生中从未有的最难以置信的事,它好比你对一张纸发射出一发炮弹,结果被反弹回来而打到自己身上……”卢瑟福对实验的结果进行了分析,认为只有原子的几乎全部质量和正电荷都集中在原子中心的一个很小的区域,才有可能出现α粒子的大角度散射。由此,卢瑟福在1911年提出了原子的核式结构模型,认为在原子的中心有一个很小的核,叫做原子核(nucleus),原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。
按照这一模型,α粒子穿过原子时,电子对α粒子运动的影响很小,影响α粒子运动的主要是带正电的原子核。而绝大多数的α粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变,如图14-2(b)中的1、3、4、6、7、9,只有极少数α粒子可能与核十分接近,受到较大的库仑斥力,才会发生大角度的偏转,如图14-2(b)中的2,5,8。
根据α粒子散射实验,可以估算出原子核的直径约为10-15米~10-14米,原子直径大约是10-10米,所以原子核的直径大约是原子直径的万分之一,原子核的体积只相当于原子体积的万亿分之一。
2. 卢瑟福选用不同金属箔片
A、放在B位置时,相同时间内观察到屏上的闪光次数较少,而放在A位置时,相同时间内观察到屏上的闪光次数最多,故A正确,C错误;
B、主要原因是α粒子撞击到金原子后,因库仑力作用,且质量较大,从而出现的反弹.故B错误;
D、选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似.故D正确.
故选:AD.
3. 用a粒子轰击金属原子
卢瑟福,保持原有方向运动,运动方向发生偏转,原子核结构
4. 为什么α粒子轰击金箔时,大部分通过,小部分弹回原理是什么
卢瑟福的a粒子散射试验:说明了分子之间是有间隙的。
结果:大多数散射角很小,约1/8000散射大于90°; 极个别的散射角等于180°。
结论:正电荷集中在原子中心。
卢瑟福从1909年起做了著名的α粒子散射实验,实验的目的是想证实汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据。在此基础上,卢瑟福提出了原子核式结构模型。
为了要考察原子内部的结构,必须寻找一种能射到原子内部的试探粒子,这种粒子就是从天然放射性物质中放射出的α粒子。卢瑟福和他的助手用α粒子轰击金箔来进行实验,图14-1是这个实验装置的示意图。
在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束很细的射线射到金箔上。当α粒子穿过金箔后,射到荧光屏上产生一个个的闪光点,这些闪光点可用显微镜来观察。为了避免α粒子和空气中的原子碰撞而影响实验结果,整个装置放在一个抽成真空的容器内,带有荧光屏的显微镜能够围绕金箔在一个圆周上移动。
实验结果表明,绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生了较大的偏转,并有极少数α粒子的偏转超过90°,有的甚至几乎达到180°而被反弹回来,这就是α粒子的散射现象。
发生极少数α粒子的大角度偏转现象是出乎意料的。根据汤姆孙模型的计算,α粒子穿过金箔后偏离原来方向的角度是很小的,因为电子的质量不到α粒子的1/7400,α粒子碰到它,就像飞行着的子弹碰到一粒尘埃一样,运动方向不会发生明显的改变。正电荷又是均匀分布的,α粒子穿过原子时,它受到原子内部两侧正电荷的斥力大部分相互抵消,α粒子偏转的力就不会很大[图14-2(a)]。然而事实却出现了极少数α粒子大角度偏转的现象。卢瑟福后来回忆说:“这是我一生中从未有的最难以置信的事,它好比你对一张纸发射出一发炮弹,结果被反弹回来而打到自己身上……”卢瑟福对实验的结果进行了分析,认为只有原子的几乎全部质量和正电荷都集中在原子中心的一个很小的区域,才有可能出现α粒子的大角度散射。由此,卢瑟福在1911年提出了原子的核式结构模型,认为在原子的中心有一个很小的核,叫做原子核(nucleus),原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。
按照这一模型,α粒子穿过原子时,电子对α粒子运动的影响很小,影响α粒子运动的主要是带正电的原子核。而绝大多数的α粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变,如图14-2(b)中的1、3、4、6、7、9,只有极少数α粒子可能与核十分接近,受到较大的库仑斥力,才会发生大角度的偏转,如图14-2(b)中的2,5,8。
根据α粒子散射实验,可以估算出原子核的直径约为10-15米~10-14米,原子直径大约是10-10米,所以原子核的直径大约是原子直径的万分之一,原子核的体积只相当于原子体积的万亿分之一。
5. 原子中发现有电子存在用阿尔法粒子轰击金属箔少数阿尔法粒子的方向偏转或弹回
A.大多数α粒子通过了金箔,则金原子不是实心球体,故A错误;
B.金原子核带正电,故B错误;
C.极少数发生了偏转或被弹回,则金原子质量比α粒子质量大的多,故C错误;
D.大多数α粒子通过了金箔,极少数发生了偏转或被弹回,则相当于金原子而言,金原子核体积小,质量大,故D正确.
故选:D.
6. α粒子的散射实验中,金箔中金原子的电子为什么不会被带走
α粒子散射实验(Geiger–Marsden experiment(s))又称金箔实验、Geiger-Marsden实验或卢瑟福α粒子散射实验。是1909年 汉斯·盖革和恩斯特·马斯登(Jishi.Y)在欧内斯特·卢瑟福指导下于英国曼彻斯特大学做的一个著名物理实验。
实验用准直的α射线轰击厚度为微米的金箔,发现绝大多数的α粒子都照直穿过薄金箔,偏转很小,但有少数α粒子发生角度比汤姆生模型所预言的大得多的偏转,大约有1/8000 的α粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射,更无法用汤姆森模型说明。1911年卢瑟福提出原子的有核模型(又称原子的核式结构模型),与正电荷联系的质量集中在中心形成原子核,电子绕着核在核外运动,由此导出α粒子散射公式,说明了α粒子的大角散射。卢瑟福的散射公式后来被盖革和马斯登改进了的实验系统地验证。根据大角散射的数据可得出原子核的半径上限为
铜原子结构
按照这一模型,α粒子穿过原子时,电子对α粒子运动的影响很小,影响α粒子运动的主要是带正电的原子核。而绝大多数的α粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变,只有极少数α粒子可能与核十分接近,受到较大的库仑斥力,才会发生大角度的偏转。
根据α粒子散射实验,可以估算出原子核的直径约为10^-15米~10^-14米,原子直径大约是10-10皮米,所以原子核的直径大约是原子直径的万分之一,原子核的体积只相当于原子体积的万亿分之一。
希望我能帮助你解疑释惑。
7. 历史上人们如何发现原子的内部秘密
1803年英国科学家道尔顿创立了原子学说以后,在很长一段时间里人们都认为原子是一个实心球体;直到1897年英国科学家汤姆生发现电子以后,人们才开始真正揭开了原子内部的秘密;1910年卢瑟福做了一个著名的实验――α粒子散射实验,建立了有核原子模型;1913年丹麦科学家玻尔提出了更为令人信服的原子结构学说;20世纪30年建立了原子的电子云模型。至此,人类对原子结构的认识又向前迈进了一大步。
详细可参考郭正谊著《打开原子的大门》
电子书地址:http://www.tianyabook.com/kepu2005/g/guozhengyi/dkyz/002.htm
8. 卢瑟福实验:α粒子轰击金箔
卢瑟福做的实验
现象1:大多数α粒子能穿透金箔而不改变原来运动方向。
(大多数α粒子没有受到很大的外力作用,即其运行轨迹上没有遇到带电的、质量相对大的物质,是因为原子的正电荷和质量大部分集中在原子内部很小的一个点上)
即:α粒子通过原子内(或原子间)的空隙。
现象2:一小部分α粒子改变原来的运动方向。
(因为这一小部分α粒子受到了较强的电荷的作用力,原因是其运动轨迹距离原子核较近,受到的斥力较大)
即:α粒子经过金原子核附近受斥力的作用。
现象3:少数α粒子被弹了回来。
(原因是正电荷与正电荷的排斥作用,这极少数α粒子的轨道经过原子核,而且原子核体积占原子很小的一部分,所以反弹的粒子数量也极少)
即:α粒子撞击金原子核被弹回(金原子核的质量比α粒子大)。
祝你学习进步!
9. 用α粒子流轰击金箔,对金箔的刺激是什么,引起的变化是什么
为了揭开原子内部结构的奥秘,1911年著名物理学家卢瑟福等人做了著名的α粒子轰击金箔实验:
【实验装置】铅盒内放有少量放射性元素钋,向外发射一束带正电的质量比电子大很多的高速运动的α粒子轰击金箔,穿过金箔的α粒子打到荧光屏上产生一个亮点,用显微镜可以观察到,整个装置放在真空容器中。
【实验现象】绝大部分α粒子穿过金箔后仍然沿原来方向前进;少数α粒子发生较大偏转;极少数α粒子偏转角大于90°,甚至有的α粒子原路返回。
【实验现象的分析】绝大部分α粒子不改变运动方向,说明穿过时没受到阻碍,原子内部有很大的空间,原子的正电荷和质量大部分集中在原子内部很小的一点,即原子核上。少数α粒子有较大偏转,其原因是这部分α粒子的运动轨迹距离带正电的部分较近,受到斥力的作用;而这个施力者不可能是电子,电子质量太小,只能是一个带正电的大质量的“物体”原子核。极少数α粒子方向改变180°,只能是带正电α粒子与一个小体积、大质量、带正电的“物体”正碰的结果。
【结论】比较绝大多数、少数、极少数α粒子的运动轨迹,可知原子内部一定有一个体积很小且带正电、集中了几乎原子的全部质量“物体”——原子核的存在,核外有很大空间。
另外,根据原子对外不显电性,说明电子一定带负电;再根据异种电荷相吸引,而带正电的原子核没有能把带负电的电子吸进去,只能是电子绕原子核高速运动了,异种电荷间的吸引力充当了圆周运动的向心力。从而得到原子的核式结构的结论:原子是由居于原子中心的原子核和核外电子构成;原子核体积很小,带正电,集中了几乎原子的全部质量质;电子在核外很大空间里绕核高速运动。
10. 卢瑟福用α粒子轰击金属箔的实验为什么能获得原子核质量较大和原子核体积很小的结论
a粒子根本无法轰开金原子核,反而是a粒子运动方向发生改变,据此可以得出原子核质量较大.
只有少部分a粒子发生偏转说明,只有极少部分a粒子接触到了原子核,大部分a粒子从原子中穿过,说明原子核体积很小,只占原子的极小部分.