A. 机械安全防护装置固定式和活动式防护装置设计与制造一般要求GB8196-2008 谁知道在那里下载 ,请指教!谢谢
http://wenku..com/view/11aa450f581b6bd97f19ea42.html,这个网址有,或者去标准分享回网都可答以。
B. 接近开关感应距离一般有多长 如何选择接近开关
很多人不知道接近开关到底是什么,其实它是一种不仅可以完成行程控制和限位保护的装置,而且还具有非接触检测装置的功能,我们一般主要将它用于检测零件的尺寸和速度上面,当然也可用于频率计数器、频率转换脉冲发生器、液位控制和自动处理程序等地方。接近开关他还有很多优点,比如:具有工作可靠、使用寿命长、功耗低、精度高、工作频率高、能适应恶劣环境等特点。可是,接近开关感应距离一般有多长?该如何选择接近开关?
接近开关感应距离一般有多长
接近开关型号不同,感应距离不同,如一般轴径8mm的接近开关,感应距离在0.15-1.5mm,12mm的感应距离在0.3-3mm,18mm的感应距离在0.6-6mm,30mm的感应距离在1-10mm。根据需要选择你需要的型号即可。接近开关的动作距离与被测物体的材质有关,而开关动作距离与开关的动作距离之间的关系。接近开关的作用距离和检测到的车身的厚度和尺寸都有一定的关系,检测到的材料是相同的。
我们具体看是什么类型的有接触式的有感应式的接触式的只有接触力达到一定程度(即接近开关的动触点闭合)才有作用。感应式是在一定的范围内可以检测到的。范围在一定程度上是可以调节的。参照说明书调节。接近开关的检测距离与具体型号有关,一般的检测距离在10毫米左右,如:NI25型的检测距离最大有15毫米,而NI35型的检测距离最大有25毫米。
一般有几种可能会使接近开关感应距离变短:
第一种:传感器使用时间长了感应线圈老化,造成感应距离不够
第二种:传感器电源电压偏低
第三种:传感器周围有物体或电磁干扰
如何选择接近开关
在接近开关传感器的选择中应遵循以下原则:
1.当金属材料检测,高频振荡型接近传感器应选择的,这是最敏感的检测和A3。铝、黄铜和不锈钢的检测灵敏度较低。
2.当检测体非金属材料,如木材、纸张、塑料、玻璃、水等,采用电容式接近传感器。
3.金属体和非金属进行远程检测和控制,应选择光电接近传感器或超声波接近传感器。
4.用于检测金属,如果检测灵敏度不高,可以使用低价格的磁力接近传感器或霍尔式接近传感器。
以上内容就是小编对接近开关感应距离一般有多长,以及该如何选择接近开关的相关介绍。我们都知道,每个行业所涉及的领域都是不同的,也就是说,接近开关也并不是同一个,当我们在对于不同的材料和不同的检测范围的时候,应该选择不同类型的接近开关来使用,这样才能使其具有较高的性能比。那么我们在选择接近开关的时候如果不懂,那么可以参考以上文中的方法。
C. 防雷装置检测的要求和时间间隔是多少
根据中国气象局第20号令《防雷减灾管理办法》第十九条 投入使用后的防雷装置实行定期检测制度。防雷装置应当每年检测一次,对爆炸和火灾危险环境场所的防雷装置应当每半年检测一次。
检查的内容如下:
1、仪器仪表鉴定或校准:检查仪器、仪表鉴定证书、校准证书是否在有效期的范围内,一般要求每台检测仪器、仪表要纳入计量的检测,检测单位可委托有计量认证资质的检定单位进行常规的计量检测,检测合格的,由检定单位核发给每台仪器、仪表一张计量认证合格证。
2、检査仪器仪表电池:检査仪器、仪表所使用的电池是否在正常值范围,如果电池的电压不足,则应立即更换新的电池如遇到在检测中仪器、仪表的电池电力不足时,建议随身携带一组与仪器、仪表相配套的备用电池。
3、检查检测设备外观及其附属设备:检査检测用测试线绝缘层是否有破损,如果有破损则应更换或采用绝缘胶带对破损的部位进行处理,避免让裸露的金属线在检测过程中碰到带电物体或接地体产生危及人身安全或影响检测数据情况出现如果发现检测线某处断开,可用万用电表的电阻挡寻找检测线断开位置并做处理,以免影响检测工作。
(3)光线式防碰撞装置检测距离扩展阅读
防雷装置检测顺序可按先检测外部防雷装置,再检测内部防雷装置进行。
外部防雷装置包括接闪器(接闪杆、接闪带、接闪线、接闪网)、引下线、接地装置、金属门窗及屋面大型金属物体的等电位连接。
内部防雷装置包括各级电涌保护器(SPD)、屋内电子设备的等电位连接、电梯机房的等电位连接、均压环、电子设备安全距离等。
外部防雷装置和内部防雷装置检测完毕后应将每项检测结果填人防雷装置安全检测原始记录表中作为检测的原始记录。
防雷装置检测中的SPD是电涌保护器。
当电源采用TN系统时,从总配电盘(箱)开始引出的配电线路和分支线路必须采用TN-S或TN-C-S系统。
原则上电涌保护器(SPD)和等电位连接位置应在各防雷区的交界处,但当线路能承受顶期的电涌电压时,SPD可安装在被保护设备处。线路的金属保护层或屏蔽层宜首先与防雷区交界处进行等电位连接。
D. 塔吊防碰撞监控设备装置作用是什么塔吊群监控系统能保证真的安全吗
群塔防碰撞功能来是用于复杂自施工环境下多塔机作业的安全防碰撞报警系统,能有效的防止工地塔机的碰撞,预防和减少机群协同作业中碰撞,提高工地的施工安全!以 全球共德 为例子, 全球共德 塔机防碰撞系统是安全有效的动态监视系统,它能够帮助塔机操作员避免那些由于操作失误造成的严重、甚至致命的事故
E. 后下部防护装置状态可调整的车辆,其防护装置下边缘离地高度为多少
后下部防护装置的技术要求
3.1 后下部防护装置的横向构件的端部不得弯向车辆后方,尖锐部分不得朝后。横向构件的端部成圆角状,其端头圆角半径不小于2.5mm,横向构件的截面高度不小于100 mm。
3.2 后下部防护装置在车辆后部可以被设计成具有不同的安装位置。此时,应具有可靠的方法以保证其安装后在安装位置上不会随意移动。操作员要改变装置位置时须施加的力最大不能超过400 N。
3.3 后下部防护装置对追尾碰撞的车辆必须具有足够的阻挡能力,以防止发生钻人碰撞。该阻挡功能应按照3.3.1的静态加载试验或3.3.2的移动壁障碰撞试验进行考核。
3.3.1 按附录A(标准的附录)中静态加载试验过程与试验条件规定进行试验,在指定的试验力作用期间和之后,可观测到的后下部防护装置的最大水平变形量应做记录。
3.3.2 按附录B(标准的附录)中移动壁障碰撞试验过程与试验条件规定进行试验,在指定的碰撞过程中可观测到的移动壁障碰撞过程中的钻人量、最大减速度值及碰撞后的反弹速度应做记录,并且应满足3.3.2.1和3.3.2.2的要求。
3.3.2.1 在附录B中指定的碰撞过程中,后下部防护装置可以变形、开裂,但是不许整体脱落。
3.3.2.2 在附录B中指定的碰撞过程中,后下部防护装置应能够吸收碰撞能量以缓和冲击。要求移动壁障的最大减速度不大于40 g,反弹速度不大于2m/s。
第Ⅱ部分
安装了符合第Ⅰ部分要求的后下邵防护装置的N2、N3、O3和O4类车辆
4 安装了符合第Ⅰ部分要求的后下部防护装置的N2、N3、O3和O4类车辆的技术要求
4.1 在空载状态下,车辆的后下部防护装置的下边缘离地高度及按照3.3.1进行试验时施加于后下部防护装置的试验力的作用点离地高度应满足4.1.1或4.1.2的要求,并应做记录。
4.1.1 对于后下部防护装置的状态可以调整的车辆:车辆的后下部防护装置整个宽度上的下边缘离地高度应不大于450 mm,同时按照3.3.1进行试验时施加于装置的试验力的作用点离地高度不能超过500mm。
4.1.2 对于后下部防护装置的状态不能调整的车辆:车辆的后下部防护装置整个宽度上的下边缘离地高度应不大于550 mm,同时按照3.3.1进行试验时施加下装置的试验力的作用点离地高度不能超过600 mm。
4.2 后下部防护装置的宽度不可大于车辆后轴两侧车轮最外点之间的距离(不包括轮胎的变形量),并且后下部防护装置任一端的最外缘与这一侧车辆后轴车轮最外端的横向水平距离不大于100mm。如果车辆有两个以上的后轴,应以最长的后轴为准。另外,符合附录A中A3.1.2要求的试验力的作用点与后轴最外端的距离必须测量,并应做记录。
4.3 在按照3.3.1或3.3.2的要求进行试验后,由于静态加载力的作用或移动壁障的碰撞,使后下部防护装置发生变形,则在变形后装置的后部与车辆最后端(在测量时处于空载状态下车辆上与地面的垂直距离大于3m的部分除外)的纵向水平距离不能超过400 mm。
4.4 待检验的车辆在安装了符合本标准第:部分要求的后下部防护装置之后,其最大设计总质量不应超过车辆说明书上所标明的最大设计总质量。
4.5 车辆的后下部防护装置应不影响车辆的通行能力:或者可通过适当的措施暂时改变后下部防护装置的状态以保证车辆的离去角,满足通行的要求。
第Ⅲ部分
具有后下部防护的车辆
5 具有后下部防护的车辆的技术要求
5.1 在空载状态下,车辆的后下部防护的下边缘离地高度应满足5.1.1或5.1.2的要求。
5.1.1 对于后下部防护的状态可以调整的车辆:车辆的后下部防护整个宽度上的下边缘离地高度应不大于450mm。
5.1.2 对于后下部防护的状态不能调整的车辆:车辆的后下部防护整个宽度上的下边缘离地高度应不大于550mm。
5.2 后下部防护应尽可能的位于靠近车辆后部的位置。
5.3 后下部防护的宽度不可大于车辆后轴两侧车轮最外点之间的距离(不包括轮胎的变形量调并且后下部防护任一端的最外缘与这一侧车辆后轴车轮最外端的横向水平距离不大于100 mm,如果车辆有两个以上的后轴,应以最长的后轴为准。如果装置属于车体或车体同时也是装置的一部分,即使革体超出后轴宽度,那么后下部防护同样不能超出后轴宽度。
5.4 后下部防护的横向构件的端部不得弯向车辆后方,尖锐部分不得朝后。横向构件的端部成圆角状,其端头圆角半径不小于2.5mm,横向构件的截面高度不小于100mm。
5.5 后下部防护在车辆后部可以被设计为具有不同的安装位置。此时,应具有可靠的方法以保证其安装后在安装位置上不会随意移动。操作员要改变装置位置时所须施加的力最大不能超过400 N。
5.6后下部防护无论在任何位置上,都应与车架或其他类似部件相连接,后下部防护对追尾碰撞的车辆必须具有足够的阻挡能力,以防止发生钻人碰撞。该阻挡功能应按照5.6.1的静态加载试验或5.6.2的移动壁障碰撞试验进行考核。
5.6.1 按附录A静态加载试验过程与试验条件规定进行试验时,在指定的试验力作用期间和之后,记录可观测到的后下部防护的最大水平变形量。
5.6.2 按附录B移动壁障碰撞试验过程与试验条件规定进行试验时,在指定的碰撞过程中可观测到的移动壁障碰撞过程中的钻入量、最大减速度值及碰撞后的反弹速度,并且应满足5.6.2.1和5.6.2.2的要求。
5.6.2.1 在附录B中指定的碰撞过程中,后下部防护可以变形、开裂,但是不许整体脱落。
5.6.2.2 在附录B中指定的碰撞过程中,后下部防护应能够吸收碰撞能量以缓和冲击。要求移动壁障的最大减速度不大于扰殿,反弹速度不大于2m/s。
5.7 在按照5.6.1或5.6.2的要求进行试验后,由于静态加载力的作用或移动壁障的碰撞,使后下部防护发生变形,则在变形后装置的后部与车辆最后端(在测量时处于空载状态下车辆上与地面的垂直距离大于3m的部分除外)的纵向水平距离不能超过400mm。
5.8 车辆的后下部防护应不影响车辆的通行能力;或者可通过适当的措施暂时改变后下部防护的状态以保证车辆的离去角,满足通行的要求。
F. 怎么利用红外传感器,使人接近物体一定距离而发出警告类似自动门上的。。。
在消费电子产品中,接近感应作为一种探测用户身体或手部存在的方法,越来越为人们所接受。该技术也能够用于动作感应,如检测用户手势。用户手势作为一种输入,可以应用于许多设备,如手机、计算机和其他家用电子产品。
要理解动作感应系统设计的理论基础,需要了解红外线(IR)与可见光的差异,探讨接近和动作感应系统如何在单一LED 下运行,以及动作感应在使用多个LED 进行多接近测量时如何工作。
当我们谈及“光”时,通常指的是来自太阳或灯具的可见光,然而,可见光仅占光谱范围中的一小部分。我们把可见光定义为人眼可以识别的所有光线,通常人眼可以识别的光线波长为380-750nm。那么,人眼无法识别的非可见光(如波长为850 nm 光)又如何呢?
IR 辐射光的波长为750nm-1000μm,IR 光与可见光有着相同的特性,例如反射率,而且它可以通过特殊灯泡或发光二极管生成。因为人眼无法看到IR 光,所以我们可以用它来完成一些特殊的人机界面任务,例如接近检测,而无需用户与系统进行任何直接接触。
IR 接近传感系统能够检测附近物体的存在,并根据检测结果做出反应。IR 接近检测的应用无处不在。 例如,手机可以使用接近传感技术检测通话时手机是否接近面部。当你把手机靠近耳边时,手机将检测 到头的存在,从而自动关闭屏幕以节省电能。其他接近感应系统的例子包括皂液器和饮水机,你可以把 手放在传感器附近(通常在皂液管或水龙头附近),以“非接触”而又卫生的方式获取皂液或水。
在高端 汽车上,外部防碰撞系统也使用接近检测,当汽车与其他汽车或者物体太靠近时,接近检测会提醒司机 注意。有些车辆还可以使用车内接近感应系统检测乘客的存在,从而调整安全装置(如安全气囊)。 接近检测通过专门设计的IR LED 实现。与IR LED 相对应的是光电二极管,它一般用来检测LED 发出 的IR 光。当IR LED 和光电二极管同方向放置时,光电二极管将不会检测到任何IR 光,除非有物体在 LED 的前面,将光反射回光电二极管。反射回光电二极管的光强与物体到光电二极管的距离逆向相 关。
图 1:一维空间动作检测
单一 LED 和光电二极管相结合可以检测一些动作,例如可以检测物体是否靠近或远离光电二极管,这 仅仅是一维空间检测。假设一个系统,其布局如图1 所示,单一LED 系统仅使用LED1 与IR 传感器。 图2 是三个手势动作过程中Silicon Labs Si1120 传感器感应IR LED 后的输出值,其中Y 轴是反射的 IR 光强,X 轴是时间。三个手势包括沿图1 X 轴从左到右的滑动,沿Y 轴从底部到顶部的滑动,以及 沿Z 轴由远及近,然后由近及远的往复动作。图2 表明,单一LED 系统不能区分这些手势,使用单一 LED,系统只能检测到物体正在接近或远离传感器,而不能判别其方向。
图 2:单一LED 系统性能分析
二维空间检测由位于不同位置的两个LED 和单个光电二极管组成。从LED1 得到一个测量值,然后快 速从LED2 获得另一个测量值,两个测量值被用于计算二维空间上的物体位置。其中一维空间是接近 LED1(左)或接近LED2(右),而另一维空间是接近或远离光电二极管。图3 是与图2 相同的三个 手势,其中白线代表从LED1 中读出的数据,红线代表从LED2 读出的数据。从左到右滑动过程中,白 线上升,然后是红线。当手从左到右滑动时,LED1 反射IR 光到传感器,然后是LED2。图 3:二维空间中手势性能分析
三维空间动作检测由三个LED 和单个光电二极管组成。LED3 与LED1、LED2 不在同一直线上,如图 1 所示,可以把LED1 和LED2 之间的连线看作X 轴,LED1 和LED3 之间的连线看作Y 轴,从光电二 极管和LED 到被测物体之间的连线看作Z 轴。图4 显示了与图2 和图3 相同的测量过程,其中蓝线代 表LED3 的测量数据。当手从左向右滑动时,因为手在LED1 和LED3 上同时通过,LED1 和LED3 数 据线同时上升,然后是LED2 数据线。当手从底部向顶部滑动时,因为手先遇到来自LED3 的IR 光, LED3 数据线上升,然后是LED1 和LED2。当往复动作时,因为手在整个过程中都反射等量的LED 光,三个LED 测量值是相同的。图 4:加入LED3 后,三维空间中动作性能分析
当 IR LED 和IR 传感器应用于产品时,这些组件通常不会用作装饰目的而放在外面,终端产品至少需 要一个开口或透明窗口,让IR 光透过。
IR LED 从窗口中照射出,被外部物体反射后,通过窗口进入Si1120 传感器。单一窗口配置的主要缺点 是:窗口将导致一些光线被内反射到Si1120,即使在检测范围内没有外部物体时,大量反射光也可能 导致传感器输出。
双窗口设计使用其中一个窗口用于IR LED,另一个窗口用于传感器。通过在LED 和传感器之间进行适 当的隔离,设计消除了内部反射的问题,为系统提供更好的敏感性和检测范围。
对于 IR 接近感应系统设计而言,选择何种IR LED 是一项非常重要的决定。IR LED 视角对最大检测距 离和范围有很大影响。从LED 射出的IR 光形成一个圆锥状,圆锥顶角(大多数LED 能量从这里输 出)被称为LED 视角。图 5:窄视角和宽视角IR LED 的差异
所有的 LED 都有一个特定的视角,一个窄视角LED 意味着发出的能量更加集中,比宽视角LED 照射 的更远。这意味着使用窄视角IR LED 将在窄检测区域中形成更远的检测范围,图5 说明了窄视角和宽 视角IR LED 的差异。
当设计 IR 系统时,系统中被测物体的特点也是需要重点考虑的。除了用于检测手势,IR 接近感应系统 也能被用于检测无生命物体,如车库门(打开或关闭)。检测较大物体时,由于有更多的IR 光被反 射,检测距离将更远。物体的颜色是另一个需要考虑的因素,因为IR 光与可见光有相同特性,浅色物 体比深色物体反射更多光线。物体的颜色越深,越要接近IR 系统,因为仅有来自IR LED 的少量IR 光 被反射到IR 传感器。
在消费电子、工业和汽车领域应用中,许多电子系统从非接触式反射中受益。IR 接近感应为需要检测 物体存在的系统提供了一个最佳方法。接近感应也可用于检测最多三维空间内的动作,甚至是手势,使 得下一代电子产品的人机界面更先进、更直观。(主讲:Alan Pang,Silicon Labs 作者:Alan Sy,Silicon Labs)
G. 起重机位置监控(天车防撞)用的激光传感器,有哪些检测范围
我了解的邦纳激光传感器,直反射式的最大检测5m,反射板式的最大检测距离50m,具体型号要根据自身需求,选择最适合的就行。可以去咨询无锡宇轩电子,他们是专业做这个的。
H. 自动扶梯扶手防爬阻挡防滑装置距离地面多少和延伸多少
1米
I. 超声波测距的倒车防碰撞系统中,与障碍物之间距离越来越近时,蜂鸣器报警频率也提高,原理是什么
这个是软件控制的,为了提醒人危险。
J. 人体检测功能:在办公室上安装这个装置,用来检测办公桌前是否有人。所以检测距离在1米之内就可以
留下email,给你一个电路参考。
发了一份文件给你,或者可参考这个现成的,距离可调节:http://www.xie-gang.com/HWZ.htm