❶ 急!!超声波遇到障碍物会反射,但它的穿透性又很好,怎么理解这句话啊
超声波与普通声波一样都是通过空气的振动传递。
之所以叫超声波是因为超声波在空气中传递时,振动的频率比普通声波快得多。
打个比方,两个人跑步,速度都很快,但跑步的方式不一样,一个人是大步流星式跑,每跑一步都跨很大一步,这就类似普通声波。
另一个人是小步跑,但换脚频率很快,这就类似于超声波。
请看图,图上方是普通声波,每次在空气中振动时需要的时间较长,而下方的超声波振动时间很快。
为什么超声波会比普通声波衰减快?
你看看两张图,两种声波跑相同的时间,超声波所跑过的路径绝对比普通声波要长,所以同样的传递方向同样的时间超声波损耗更多。
为什么传播距离短,同样道理看波形就能明白,因为超声波振荡次数太多消耗了能量,就跑不了太远了。
至于你所说的穿透与不穿透的问题可以这样来理解:
一拳打在钢板上,力量将被反弹,这时你能感到明显的痛。
但如果一拳打在绵花上,力量将被吸收。
按这个原理,如果有一个仪器,能向一个方向发出超声波,并且能收集反方向发回来的声波。 当向钢板发射声波时,声波将百分百回弹,这时仪器收到的声波跟发出去的一模一样。这时候,我们可以肯定前方物体是钢板。
如果前方物体是一团绵花,将很少有声波返回。
每种物体根据其特点都有不同的返回声波量,因此可以利用这一原理制作雷达,B超等仪器。
还有另一种情况,超声波的能量很大很大,频率也更快,就好像一个大力士的拳头,即使打在一块钢板上,也将会将钢板击穿。 这时候有部分声波继续向前传递,一部分返回
补充你的补充:
一般情况下,我是指普通能量(非军事武器或特殊用途)。超声波发射到空气中,在空气中传递,遇到钢板,将全返回。
其实空气也是物体,但非常软,所以在空气和水中,声波将继续传递(也就是被穿透)
雷达: 基站向天上发射声波,遇空气继续传递,遇风筝或飞鸟时一部分返回一部分继续传递,遇到金属做的飞机时全返回,返回的动能与发射时的接近,这时候雷达报警,发现敌机。
是的,无法穿透。 根据物体的坚硬度决定返回多少。 所以用B超检查人体内部的时候,骨头等硬的会返回多,肌肉皮肤等会返回少,更从被穿透。 由于人体的各种组织返回数量的多少医生都有记录都是确定的,一旦体内产生了恶性肿流病变,返回的值就是不确定的。马上就能断定
❷ 超声波与次声波的作用与危害
超声波
超声波一般由具有磁致伸缩或压电效应的晶体的振动产生。它的显著特点是频率高,波长短,衍射不严重,因而具有良好的定向传播特性,而且易于聚焦。也由于其频率高,故而超声波的声强通常比一般声波大得多。用聚焦的方法,可以获得声强高达109W/m2的超声波。超声波在液体、固体中传播时,衰减很小。在不透明的固体中,能穿透几十米的厚度。超声波的这些特性,在技术上得到广泛的应用。
作用
利用超声波的定向发射性质,可以探测水中物体,如探测鱼群、潜艇等,也可用来测量海深。由于海水的导电性良好,电磁波在海水中传播时,吸收非常严重,因而电磁雷达无法使用。利用声波雷达——声纳,可以探测出潜艇的方位和距离,因为超声波碰到杂质或介质分界面时有显著的反射,所以可以用来探测工件内部的缺陷。超声探伤的优点是不伤损工件,可以探测大型工件,如用于探测万吨水压机的主轴和横梁等。此外,在医学上可用探测人体内部的病变,如“B超”仪就是利用超声波来显示人体内部结构的图像。
目前超声探伤正向着显像方向发展,如用声电管把声信号变换成电信号,再用显像管显示出目的物的像来。随着激光全息技术的发展,声全息也日益发展起来。把声全息记录的信息再用光显示出来,可直接看到被测物体的图像。声全息在地质,医学等领域有着重要的意义。
由于超声波能量大而且集中,所以也可以用来切削、焊接、钻孔、清洗机件,还可以用来处理种子和促进化学反应等。
超声波在介质中的传播特性,如波速,衰减,吸收等与介质的某些特性(如弹性模量、浓度、密度、化学成份、黏度等)或状态参量(如温度、压力、流速等)密切有关,利用这些特性可以间接测量其他有关物理量。这种非声量的声测法具有测量精度高,连度快等优点。
由于超声波的频率与一般无线电波的频率相近,因此利用超声元件代替某些电子元件,可以实现电子元件难于起到的作用。超声延迟线就是其中一例。因为超声波在介质中的传播速度比起电磁波小得多,用超声波延迟时间就方便得多。
次声波
次声是频率低于可听声频率范围的声,它的频率范围大致为10-4~20Hz。
作用
由于次声的频率很低,所以大气对次声波的吸收系数很小,因而其穿透力极强,可传播至极远处而能量衰减很小。10Hz以下的次声波可以传播至数千千米的距离。1983年夏,位于印度尼西亚苏门答腊岛和爪哇岛之间的喀拉喀托火山爆发,火山爆发时产生的强次声波绕地球转了3圈,历时108小时后才慢慢消逝。全世界的微气压计都记录到了它的振动余波。1986年1月29日,美国航天飞机"挑战者"号升空爆炸,爆炸产生的次声波历时12小时53分钟,其爆炸威力之强,连远在1万多千米处的我国北京香山中科院声学研究所监测站的监测仪都"听"到了。通常的隔音吸音方法对次声波的特强穿透力作用极微,7000 Hz的声波用一张纸即可隔挡,而7Hz的次声波用一堵厚墙也挡不住,次声波可以穿透十几米厚的钢筋混凝土。
危害
次声波具有较大的破坏性。强烈的次声波通过固体媒质的传播,会直接破坏建筑物,使其损坏或坍塌。1980年,我国南京某广场的一座大楼施工时,打桩机产生的强烈振动波,把工地附近一家电影院的墙壁震裂,致使这家电影院不得不被拆掉重建。高空大气湍流产生的次声波能折断万吨巨轮上的桅杆,能将飞机撕得四分五裂;地震或核爆炸所激发的次声波能将高大的建筑物摧毁;海啸带来的次声波可将岸上的房屋毁坏。
次声的频率与人体器官的固有频率相近(人体各器官的固有频率为3~17Hz,头部的固有频率为8~12Hz,腹部内脏的固有频率为4~6Hz),当次声波作用于人体时,人体器官容易发生共振,引起人体功能失调或损坏,血压升高,全身不适;头脑的平衡功能亦会遭到破坏,人因此会产生旋转感、恶心难受。许多住在高层建筑上的人在有暴风时会感到头晕恶心,这就是次声波作怪的缘故。如果次声波的功率很强,人体受其影响后,便会呕吐不止、呼吸困难、肌肉痉挛、神经错乱、失去知觉,甚至内脏血管破裂而丧命。所谓次声波武器就是利用这一原理来对人体产生影响和杀伤作用的一类新概念武器。由于人听不到、看不见、摸不着次声波,所以又有人把次声波武器称之为"无声杀手"、"哑巴武器"等。
次声波对人类而言可以说是一个双刃剑。一方面,人们通过研究自然现象产生的次声波的特性和产生机制,可以更深入地认识这些现象的特性和规律,例如人们利用测定极光产生次声波的特性来研究极光活动的规律等。利用接收到的被测声源所辐射出的次声波,探测它的位置、大小和其他特性,例如通过接收核爆炸、火箭发射火炮或台风所产生的次声波去探测这些次声源的有关参量。许多灾害性现象如火山喷发、龙卷风和雷暴等在发生前可能会辐射出次声波,因此有可能利用这些前兆现象预测灾害事件等等。
另一方面,次声波对人体是有害的,人类必须防止次声波的污染。让人头痛的是,由于次声波的穿透力极强,几乎没有什么办法能够消除它对人体的危害。人们惟一能做的就是在各种次声波污染物上(交通工具、打桩机等)安上减振器,把它对人体的危害减小到最低程度。
❸ 声呐为什么用超声波不用次声波
由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。
然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。
(3)为什么超声波比声波衰减小扩展阅读:
可用来探测水下目标,并测定其距离、方位、航速、航向等运动要素。主动声呐发射某种形式的声信号.利用信号在水下传播途中障碍物或目标反射的回波来进行探测。由于目标信息保存在回波之中,所以可根据接收到的回波信号来判断目标的存在,并测量或估计目标的距离、方位、速度等参量。
传统上潜艇安装声呐的主要位置是在最前端的位置,由于现代潜艇非常依赖被动声呐的探测效果,巨大的收音装置不仅仅让潜艇的直径水涨船高,原先在这个位置上的鱼雷管也得乖乖让出位置而退到两旁去。