『壹』 超声成像详细资料大全
超声(Ultrasound,简称US)医学是声学、医学、光学及电子学相结合的学科。凡研究高于可听声频率的声学技术在医学领域中的套用即超声医学。包括超声诊断学、超声治疗学和生物医学超声工程,所以超声医学具有医、理、工三结合的特点,涉及的内容广泛,在预防、诊断、治疗疾病中有很高的价值。
超声成像是利用超声声束扫描人体,通过对反射信号的接收、处理,以获得体内器官的图象。常用的超声仪器有多种:A型(幅度调制型)是以波幅的高低表示反射信号的强弱,显示的是一种“回声图”。M型(光点扫描型)是以垂直方向代表从浅至深的空间位置,水平方向代表时间,显示为光点在不同时间的运动曲线图。以上两型均为一维显示,套用范围有限。B型(辉度调制型)即超声切面成象仪,简称“B超”。是以亮度不同的光点表示接收信号的强弱,在探头沿水平位置移动时,显示屏上的光点也沿水平方向同步移动,将光点轨迹连成超声声束所扫描的切面图,为二维成象。至于D型是根据超声都卜勒原理制成.C型则用近似电视的扫描方式,显示出垂直于声束的横切面声象图。近年来,超声成象技术不断发展,如灰阶显示和彩色显示、实时成象、超声全息摄影、穿透式超声成像、超声计并机断层圾影、三维成象、体腔内超声成像等。
超声成像方法常用来判断脏器的位置、大小、形态,确定病灶的范围和物理性质,提供一些腺体组织的解剖图,鉴别胎儿的正常与异常,在眼科、妇产科及心血管系统、消化系统、泌尿系统的套用十分广泛。
『贰』 超声波的介绍
超声波
我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20,000赫兹。因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用于测距,测速,清洗,焊接,碎石等
虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。
我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。
医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。
频率高于20000 Hz(赫兹)的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生
超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、
以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。
超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生
一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应:
①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。
超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
超声波是声波大家族中的一员。
声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。
超声波是指振动频率大于20KHz以上的,人在自然环境下无法听到和感受到的声波。
超声波治疗的概念:
超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的。
在全球,超声波广泛运用于诊断学、治疗学、工程学、生物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范畴。
(一)工程学方面的应用:水下定位与通讯、地下资源勘查等
(二)生物学方面的应用:剪切大分子、生物工程及处理种子等
(三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超等
(四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等
超声波的特点:
1、超声波在传播时,方向性强,能量易于集中。
2、超声波能在各种不同媒质中传播,且可传播足够远的距离。
3、超声与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应。(治疗)
超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。
超声波的发展史:
一、国际方面:
自19世纪末到20世纪初,在物理学上发现了压电效应与反压电效应之后,人们解决了利用电子学技术产生超声波的办法,从此迅速揭开了发展与推广超声技术的历史篇章。
1922年,德国出现了首例超声波治疗的发明专利。
1939年发表了有关超声波治疗取得临床效果的文献报道。
40年代末期超声治疗在欧美兴起,直到1949年召开的第一次国际医学超声波学术会议上,才有了超声治疗方面的论文交流,为超声治疗学的发展奠定了基础。1956年第二届国际超声医学学术会议上已有许多论文发表,超声治疗进入了实用成熟阶段。
二、国内方面:
国内在超声治疗领域起步稍晚,于20世纪50年代初才只有少数医院开展超声治疗工作,从1950年首先在北京开始用800KHz频率的超声治疗机治疗多种疾病,至50年代开始逐步推广,并有了国产仪器。公开的文献报道始见于1957年。到了70年代有了各型国产超声治疗仪,超声疗法普及到全国各大型医院。
40多年来,全国各大医院已积累了相当数量的资料和比较丰富的临床经验。特别是20世纪80年代初出现的超声体外机械波碎石术和超声外科,是结石症治疗史上的重大突破。如今已在国际范围内推广应用。高强度聚焦超声无创外科,已使超声治疗在当代医疗技术中占据重要位置。而在21世纪(HIFU)超声聚焦外科已被誉为是21世纪治疗肿瘤的最新技术。
超声波治病机理:
1.机械效应:超声在介质中前进时所产生的效应。(超声在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。使细胞内部结构发生变化,导致细胞的功能变化,使坚硬的结缔组织延伸,松软。
超声波的机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能,因此具有超声波独特的治疗意义。
2.温热效应:人体组织对超声能量有比较大的吸收本领,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。
产热过程既是机械能在介质中转变成热能的能量转换过程。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。
3.理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。实践证明一些理化效应往往是上述效应的继发效应。TS-C型治疗机通过理化效应继发出下列五大作用:
A.弥散作用:超声波可以提高生物膜的通透性,超声波作用后,细胞膜对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,加速代谢,改善组织营养。
B.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。
C.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。
D.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。
E.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。胶原合成及成熟。促进或抑制损伤的修复和愈合过程。从而达到对受损细胞组织进行清理、激活、修复的过程。
量子声学。
超声波还可以进行雷达探测.清洗较为精细的物品,如钟表,可以利用超声波来击碎病人体内胆结石,还可以利用超声波测距.
超声波检测还用于电阻焊的焊点强度的检测。
『叁』 什么是超声波
什么是超声波?
超声波 我们知道,当物体振动时会发出声音。
科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为16~20,000赫兹。
因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。
虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。
大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。
我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。
医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。
医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。
此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。 目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。
新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。
现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。
频率高于20000 Hz(赫兹)的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。
产生 超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、 以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。 超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生 一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应: ①机械效应。
超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。
超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。 ②空化作用。
超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。
另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。
因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。
与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。
例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处。
【什么是超声波?超声波分类及应用】
超声波技术是一门以物理、电子、机械及材料学为基础的通用技术之一.超声波技术是通过超声波产生、传播及接收的物理过程而完成的.超声波具有聚束、定向及反射、透射等特性.超声波的应用超声波测液位超声波液位计按超声振动幅射大小不同大致可分为:1、用超声波使物体或物性变化的功率应用称功率超声,例如:在液体中发生足够大的能量,产生空化作用,能用于清洗、乳化.2、用超声波得到若干信息,获得通信应用,称检测超声,例如:用超声波在介质中的脉冲反射对物体进行厚度测试称超声测厚.超声波测厚及应用在工业领域中超声波测厚是一门成熟的高新技术,它的最大优点是检测安全、可靠及精度高,而且它可以巡回在运行状态进行检测.超声测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种.由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表.超声波测厚仪主要有主机和探头两部分组成.主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度.。
超声波的意思是什么?
超声波:频率高于20000 Hz的声音叫做超声波。(蝙蝠、海豚等可发出超声波)
其定义,可能是因为此种声波超过人类听力频率范围的上限,故称为超声波。
详细说明:
(1)人耳听觉范围:20Hz-20000Hz。其中20 Hz是人类听觉的下限,20000 Hz是人类听觉的上限。
(2)超声波:频率高于20000 Hz的声音叫做超声波。(蝙蝠、海豚等可发出超声波)
(3)次声波:频率低于20 Hz的声音叫做次声波。(地震、海啸、台风、火山喷发等可发出次声波)
希望帮助到你,若有疑问,可以追问~~~
祝你学习进步,更上一层楼!(*^__^*)
“超声波”是什么意思?
超声波:
是一种频率高于20000赫兹的声波。可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大于人的听觉上限而得名。
超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介如B超等用作诊断;超声波同时又是一种能量形式。
超声波的特点:
1,在传播时,方向性强,能量易于集中。
2,能在各种不同媒质中传播,且可传播足够远的距离。
3,与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及用于治疗。
4, 可在气体、液体、固体、固熔体等介质中有效传播。
5,可传递很强的能量。
6,会产生反射、干涉、叠加和共振现象。
超声应用:超声效应已广泛用于实际,主要有如下几方面:
1,超声检验
2,超声处理
3,超声波清洗
4,超声波加湿器
5,基础研究
6,超声除螨
7,超声除油
8,超声波空泡炼油化学原理
9,医学超声波检查
10,工业自动化控制
11,超声波制药
12,超声波对化妆品的分散
13,超声波对酒的醇化—催陈技术
超声波是什么?
我们知道,当物体振动时会发出声音。
科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20,000赫兹。
当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。
通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。
可用于测距,测速,清洗,焊接,碎石等。在医学,军事,工业,农业上有明显的作用. 理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度.这就是超声波加湿器的原理.咽喉炎.气管炎等疾病,药品很难血流到达患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效.利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。
什么是超声波?是干什么用的?
超声波是指振动频率大于20KHz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在 2∽5MHz之间,常用为3∽3.5MHz(每秒振动1次为1Hz,1MHz=106Hz,即每秒振动100万次,可闻波的频率在16-20,000HZ 之间)。
超声波有很多用途,如:
1.超声焊接
2.超声雾化
3.超声钻孔
4.超声分散
5.超声切削
6.超声电火化联合加工
7.超声波清洗
什么是超声波?超声波分类及应用
超声波技术是一门以物理、电子、机械及材料学为基础的通用技术之一。超声波技术是通过超声波产生、传播及接收的物理过程而完成的。超声波具有聚束、定向及反射、透射等特性。
超声波的应用
超声波测液位
超声波液位计按超声振动幅射大小不同大致可分为:
1、用超声波使物体或物性变化的功率应用称功率超声,例如:在液体中发生足够大的能量,产生空化作用,能用于清洗、乳化。
2、用超声波得到若干信息,获得通信应用,称检测超声,例如:用超声波在介质中的脉冲反射对物体进行厚度测试称超声测厚。
超声波测厚及应用
在工业领域中超声波测厚是一门成熟的高新技术,它的最大优点是检测安全、可靠及精度高,而且它可以巡回在运行状态进行检测。超声测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种。由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表。 超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度。
什么是超声波?
超声波是超过人的听觉阈有一定频率的波,它通常在每秒 20 000周或2万赫兹。
在医学超声中,由压电晶体的探头产生声波。 当把探头放在皮肤表面时,就可以使组织内的分子发生振动而产生 声波。
当超声波透过组织运行时,会接触到一些界面(如肝脏、骨骼 等)并且只有一部分声波被反射回探头。这样就会在屏幕上产生影 像,余下的声波可能会反射到探头以外或者被组织吸收(这个过程叫 衰减),超声波穿透组织的速度是各异的,如通过空气的速率为330 米/秒,穿过肺的速率是600米/秒,穿过肝的速率为1 555米/秒,而 透过头颅的速率是4 000米/秒,产生在屏幕上的图像由不同组织的 传导速率不同所致(如同通过窗户来区分二个器官和另一器官)。
『肆』 超声矩阵探头、面阵探头、相控阵探头有什么区别压电晶体排列的顺序分别是怎样的市面上有哪些厂家卖
超声相控阵探头分为线阵、面阵两种。
面阵相控阵探头又有矩阵、环阵等类型。
线阵相控阵探头中的晶片按照直线方向一维排布,只能实现晶片排列方向上的波束偏转。
矩阵相控阵探头中的晶片按照两个方向排布,可实现两个方向上的波束偏转。
环阵相控阵探头晶片呈同心圆环状排布,主要实现不同深度的聚焦功能。
另外还有将环阵切割为小型扇阵的,聚焦的同时可实现偏转。
市场上卖相控阵设备的都卖探头,国外的主要有:
Olympus(日本) ,GE(美国),Isonic(以色列),TD(英国)
国内主要有:
中科,汕超,多浦乐等。
『伍』 超声波是什么用于什么领域
[编辑本段]超声波的简介
我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20,000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用于测距,测速,清洗,焊接,碎石等。在医学,军事,工业,农业上有很多的应用。
理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度.这就是超声波加湿器的原理.咽喉炎.气管炎等疾病,呼唤斤年时斤百 很难血流到达患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效.利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。
现在,人们利用超声波来为飞机、轮船导航,寻找地下的宝藏。超声波就像一位无声的功臣,广泛地应用于工业、农业、医疗和军事等领域。斯帕拉捷怎么也不会想到,自己的实验,会给人类带来如此巨大的恩惠。
这个资料绝对好,也没有那么长,
让这个成为最佳答案吧!!忒感谢了!!
『陆』 什么是超声波
超声波技术是一门以物理、电子、机械及材料学为基础的通用技术之一。超声波技术是通过超声波产生、传播及接收的物理过程而完成的。超声波具有聚束、定向及反射、透射等特性。超声波的应用超声波测液位超声波液位计按超声振动幅射大小不同大致可分为:1、用超声波使物体或物性变化的功率应用称功率超声,例如:在液体中发生足够大的能量,产生空化作用,能用于清洗、乳化。2、用超声波得到若干信息,获得通信应用,称检测超声,例如:用超声波在介质中的脉冲反射对物体进行厚度测试称超声测厚。超声波测厚及应用在工业领域中超声波测厚是一门成熟的高新技术,它的最大优点是检测安全、可靠及精度高,而且它可以巡回在运行状态进行检测。超声测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种。由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表。超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度。
『柒』 超声成像分为哪几种,各有哪些特点
超声成像分为超声示波诊断法、二维超声显像诊断法、超声光点扫描法、超声频移诊断法、三维超声诊断法 。
1、超声示波诊断法即A型超声诊断法。此法是将回声以波的形式显示出来,为幅度调制型。常用A型法测量界面距离、脏器径值以及鉴别病变的物理性质,结果比较准确,为最早兴起和使用的超声诊断法。目前已多被其他方法取代。
2、二维超声显像诊断法即B型超声诊断法。所谓的B超,此法是将回声信号以光点的形式显示出来,为辉度调制型。回声强则光点亮,回声弱则光点暗。按成像速度,又分为慢速成像法和快速成像法。扫查方式有手控、机械和电子等等。
3、超声光点扫描法是在辉度调制型中加入慢扫描锯齿波,使回声光点从左向右自行移动 扫描,故也称M超声诊断法,它是B型超声中的一种特殊的显示方式。
4、超声频移诊断法即D型超声诊断法。通称为多普勒超声,此法应用多普勒效应原理,当超声发射体(探头)和反射体之间有相对运动时,回声的频率有所改变,此种频率的变化称之为频移。
5、三维超声诊断法即显示出超声的立体图像,构成立体图像的方法有数种,目前应用的仪器多为在二维图像的基础上利用计算机进行三维重建。
(7)矩阵型超声波技术是什么扩展阅读:
超声成像的基本原理:
1、超声波
超声波就是频率大于20KHZ,人耳感觉不到的声波,它也是纵波,可以在固体、液体和气体中传播,并且具有与声波相同的物理性质。但是由于超声波频率高,波长短,还具有一些自身的特性。
2、束射性
超声波具有束射性。这一点与一般声波不同,而与光的性质相似,即可集中向一个方向传播,有较强的方向性,由换能器发出的超声波呈窄束的圆柱形分布,故称超声束。
3、反射和折射
当一束超声波入射到比自身波长大很多倍的两种介质的交界面上时,就会发生反射和折射。反射遵循反射定律,折射遵循折射定律。由于入射角等于反射角,因此超声波探查疾病时要求声束尽量与组织界面垂直。
参考资料来源:网络—超声成像