导航:首页 > 制冷设备 > 超声波透射法对人体有什么影响

超声波透射法对人体有什么影响

发布时间:2023-08-27 00:30:09

『壹』 超声波具备哪些物理特性

超声是机械波,由物体机械振动产生。具有波长、频率和传播速度等物理量。用于医学上的超声频率为2.5~10MHz,常用的是2.5~5MHz.超声需在介质中传播,其速度因介质不同而异,在固体中最快,液体中次之,气体中最慢。在人体软组织中约为150m/s.介质有一定的声阻抗,声阻抗等于该介质密度与超声速度的乘积。

『贰』 超声波的特性

1、超声波在传播时,方向性强,能量易于集中。

2、超声波能在各种不同媒质中传播,且可传播足够远的距离。

3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。

4、超声波可在气体、液体、固体、固熔体等介质中有效传播。

5、超声波可传递很强的能量。

6、超声波会产生反射、干涉、叠加和共振现象。

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹(Hz)。我们人类耳朵能听到的声波频率为20Hz-20000Hz。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为1兆赫兹-30兆赫兹。

(2)超声波透射法对人体有什么影响扩展阅读:

超声波在军事、医疗及工业中有较大的用途。它应用按功率的大小可分为功率超声和检测超声。功率超声的应用包括焊接、钻孔、粉碎、清洗、乳化等,它们多属于只发射不接受的超声设备。目前人们对超声加工的确切理论仍未透彻认识。

检测超声在军事中的应用有雷达定位等。医用超声波可以穿透肌肉及软组织,使得这项技术常用来扫描很多器官,以协助医疗上的诊断和治疗。产科超声波也常用在怀孕时期的检查。医生可以利用超声波成像法透视身体,但由于超声波不能穿透骨头,所以虽然超声波对人体伤害比较低,但仍不能完全取代X光。典型超声波大约2MHz到10MHz的频率,检测超声波设备有发射及接收。

『叁』 超声波探伤仪的工作原理是什么

超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声检测方法通常有穿透法、脉冲反射法、串列法等。数字式超声波探伤仪现在通常是对被测物体(比如工业材料、人体)发射超声,然后利用其反射、多普勒效应、透射等来获取被测物体内部的信息并经过处理形成图像。多普勒效应法是利用超声在遇到运动的物体时发生的多普勒频移效应来得出该物体的运动方向和速度等特性;透射法是通过分析超声穿透过被测物体之后的变化而得出物体的内部特性的,其应用目前还处于研制阶段;反射法超声波探伤仪这里主要介绍的是目前应用最多的通过反射法来获取物体内部特性信息的方法。反射法是基于超声在通过不同声阻抗组织界面时会发生较强反射的原理工作的,正如我们所知道,声波在从一种介质传播到另外一种介质的时候在两者之间的界面处会发生反射,而且介质之间的差别越大反射就会越大,所以我们可以对一个物体发射出穿透力强、能够直线传播的超声波, 超声波探伤仪 然后对反射回来的超声波进行接收并根据这些反射回来的超声波的先后、幅度等情况就可以判断出这个组织中含有的各种介质的大小、分布情况以及各种介质之间的对比差别程度等信息(其中反射回来的超声波的先后可以反映出反射界面离探测表面的距离,幅度则可以反映出介质的大小、对比差别程度等特性),超声波探伤仪从而判断出该被测物体是否有异常。 在这个过程中就涉及到很多方面的内容,包括超声波的产生、接收、信号转换和处理等。其中产生超声波的方法是通过电路产生激励电信号传给具有压电效应的晶体(比如石英、硫酸锂等),使其振动从而产生超声波;而接收反射回来的超声波的时候,这个压电晶体又会受到反射回来的声波的压力而产生电信号并传送给信号处理电路进行一系列的处理,超声波探伤仪最后形成图像供人们观察判断。这里根据图像处理方法(也就是将得到的信号转换成什么形式的图像)的种类又可以分为A型显示、M型显示、B型显示、C型显示、F型显示等。A型显示是将接收到的超声信号处理成波形图像,根据波形的形状可以看出被测物体里面是否有异常和缺陷在那里、有多大等, 超声波探伤仪主要用于工业检测;M型显示是将一条经过辉度处理的探测信息按时间顺序展开形成一维的"空间多点运动时序图",适于观察内部处于运动状态的物体,超声波探伤仪如运动的脏器、动脉血管等;B型显示是将并排很多条经过辉度处理的探测信息组合成的二维的、反映出被测物体内部断层切面的"解剖图像"(医院里使用的B超就是用这种原理做出来的),超声波探伤仪适于观察内部处于静态的物体;C型显示、F型显示现在用得比较少。超声波探伤仪检测不但可以做到非常准确,而且相对其他检测方法来说更为方便、快捷,也不会对检测对象和操作者产生危害,所以受到了人们越来越普遍的欢迎,有着非常广阔的发展前景。

『肆』 超声成像详细资料大全

超声(Ultrasound,简称US)医学是声学、医学、光学及电子学相结合的学科。凡研究高于可听声频率的声学技术在医学领域中的套用即超声医学。包括超声诊断学、超声治疗学和生物医学超声工程,所以超声医学具有医、理、工三结合的特点,涉及的内容广泛,在预防、诊断、治疗疾病中有很高的价值。

超声成像是利用超声声束扫描人体,通过对反射信号的接收、处理,以获得体内器官的图象。常用的超声仪器有多种:A型(幅度调制型)是以波幅的高低表示反射信号的强弱,显示的是一种“回声图”。M型(光点扫描型)是以垂直方向代表从浅至深的空间位置,水平方向代表时间,显示为光点在不同时间的运动曲线图。以上两型均为一维显示,套用范围有限。B型(辉度调制型)即超声切面成象仪,简称“B超”。是以亮度不同的光点表示接收信号的强弱,在探头沿水平位置移动时,显示屏上的光点也沿水平方向同步移动,将光点轨迹连成超声声束所扫描的切面图,为二维成象。至于D型是根据超声都卜勒原理制成.C型则用近似电视的扫描方式,显示出垂直于声束的横切面声象图。近年来,超声成象技术不断发展,如灰阶显示和彩色显示、实时成象、超声全息摄影、穿透式超声成像、超声计并机断层圾影、三维成象、体腔内超声成像等。

超声成像方法常用来判断脏器的位置、大小、形态,确定病灶的范围和物理性质,提供一些腺体组织的解剖图,鉴别胎儿的正常与异常,在眼科、妇产科及心血管系统、消化系统、泌尿系统的套用十分广泛。

基本介绍

发展历程,基本原理,声波,超音波,束射性,反射和折射,散射与衍射,超音波的衰减,基本设备,都卜勒超声,超声诊断仪,图像特点,切面声像图的回声描述,超声图像的常见伪像,检查技术,装置,探测前准备,探测方法和 *** ,诊断与临床套用,B型超声检测技术的临床套用,超声都卜勒检测技术的临床套用,超声成像原理,

发展历程

20世纪50年代建立,70年代广泛发展套用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。 近三十年来,医学超声诊断技术发生了一次又一次革命性的飞跃,80年代介入性超声逐渐普及,体腔探头和术中探头的套用扩大了诊断范围,也提高了诊断水平,90年代的血管内超声、三维成像、新型声学造影剂的套用使超声诊断又上了一个新台阶。其发展速度令人惊叹,目前已成为临床多种疾病诊断的首选方法,并成为一种非常重要的多种参数的系列诊断技术。

基本原理

声波

能够在听觉器官引起声音感觉的波动称为声波。人类能够感觉的声波频率范围约在20-20000HZ。频率超过20000HZ,人的感觉器官感觉不到的声波,叫做超音波。 声波的基本物理性质如下: (一)声波的频率、周期和速度 声源振动产生声波,声波有纵波、横波和表面波三种形式。而纵波是一种疏密波,就像一根弹簧上产生的波。用于人体诊断的超音波是声源振动在弹性介质中产生的纵波。声波在介质中传播,介质中质点在平衡位置来回振动一次,就完成一次全振动,一次全振动所需要的时间称振动周期(T)。在单位时间内全振动的次数称为频率(f),频率的单位是赫兹(HZ)。f=1/T,声波在介质中以一定速度传播,质点振动一周,波动就前进一个波长(λ)。波速(C)=λ/T或C=f·λ。 (二)声阻抗 声波在媒介中传播,其传播速度与媒质密度有关。在密度较大介质中的声速比密度较小介质中的声速要快。在弹性较大的介质中声速比弹性较小的介质中要快。这就引出了声阻抗的定义,声阻抗为介质密度(ρ)和声速(C)的乘积。用字母Z表示,Z=ρ·C。

超音波

超音波就是频率大于20KHZ,人耳感觉不到的声波,它也是纵波,可以在固体、液体和气体中传播,并且具有与声波相同的物理性质。但是由于超音波频率高,波长短,还具有一些自身的特性。

束射性

超音波具有束射性。这一点与一般声波不同,而与光的性质相似,即可集中向一个方向传播,有较强的方向性,由换能器发出的超音波呈窄束的圆柱形分布,故称超声束。

反射和折射

当一束超音波入射到比自身波长大很多倍的两种介质的交界面上时,就会发生反射和折射。反射遵循反射定律,折射遵循折射定律。由于入射角等于反射角,因此超音波探查疾病时要求声束尽量与组织界面垂直。超音波的反射还与界面两边的声阻抗有关,两介质声阻抗差越大,入射超声束反射越强。声阻抗差越小反射越弱。 穿过大界面的透射声,可能沿入射声束的方向继续进行,亦可能偏离入射声束的方向而传播,后一种现象称超声折射,是由于两种介质内声速的不同所致。

散射与衍射

超音波在介质内传播过程中,如果所遇到的物体界面直径大于超音波的波长则发生反射,如果直径小于波长,超音波的传播方向将发生偏离,在绕过物体以后又以原来的方向传播,此时反射回波很少,这种现象叫衍射。因此波长越短超音波的分辨力越好。如果物体直径大大小于超音波长的微粒,在通过这种微粒时大部分超音波继续向前传播,小部分超音波能量被微粒向四面八方辐射,这种现象称为散射。

超音波的衰减

超音波在介质中传播时,入射超声能量会随着传播距离的增加而逐渐减小,这种现象称作超音波的衰减。 衰减有以下两个原因:(1)超音波在介质中传播时,声能转变成热能,这叫吸收;(2)介质对超音波的反射、散射使得入射超音波的能量向其他方向转移,而返回的超音波能量越来越小。

基本设备

都卜勒超声

基本原理 都卜勒效应 都卜勒效应是奥地利物理学家克里斯汀·约翰·都卜勒于1842年首次提出来的。描述了光源与接收器之间相对运动时,光波频率升高或降低的现象。这种相对运动引起的接收频率与发射频率之间的差别称为都卜勒频移或都卜勒效应。 声波同样具有都卜勒效应的特点,都卜勒超声最适合对运动流体做检测,所以都卜勒超声对心脏及大血管血流的检测尤为重要。 都卜勒超声心动图的基本方式 1 脉冲式都卜勒(PW) 2 连续式都卜勒(CW) 3 彩色都卜勒血流显像(CDFI)

超声诊断仪

(一)A型超声诊断仪 A超是一种幅度调制型,是国内早期最普及最基本的一类超声诊断仪,目前已基本淘汰。 (二)M型超声诊断仪 M超是采用辉度调制,以亮度反映回声强弱,M型显示体内各层组织对于体表(探头)的距离随时间变化的曲线,是反映一维的空间结构,因M型超声多用来探测心脏,故常称为M型超声心动图,目前一般作为二维彩色都卜勒超声心动图仪的一种显示模式设定于仪器上。 (三)B型超声诊断仪 B型显示是利用A型和M型显示技术发展起来的,它将A型的幅度调制显示改为辉度调制显示,亮度随着回声信号大小而变化,反映人体组织二维切面断层图像。 B型显示的实时切面图像,真实性强,直观性好,容易掌握。它只有20多年历史,但发展十分迅速,仪器不断更新换代,近年每年都有改进的新型B型仪出现,B型仪已成为超声诊断最基本最重要的设备。目前较常用的B型超声显像方式有:扫查方式:线型(直线)扫查、扇形扫查、梯形扫查、弧形扫查、径向扫查、圆周扫查、复合扫查;扫查的驱动方式:手动扫查、机械扫查、电子扫查、复合扫查。 (四)D型超声诊断仪 超声都卜勒诊断仪简称D型超声诊断仪,这类仪器是利用都卜勒效应原理,对运动的脏器和血流进行探测。在心血管疾病诊断中必不可少,目前用于心血管诊断的超声仪均配有都卜勒,分脉冲式都卜勒和连续式都卜勒。近年来许多新课题离不开都卜勒原理,如外周血管、人体内部器官的血管以及新生肿瘤内部的血供探查等等,所以现在彩超基本上均配备都卜勒显示模式。 (五)彩色都卜勒血流显像仪 彩色都卜勒血流显像简称彩超,包括二维切面显像和彩色显像两部分。高质量的彩色显示要求有满意的黑白结构显像和清晰的彩色血流显像。在显示二维切面的基础上,打开“彩色血流显像”开关,彩色血流的信号将自动叠加于黑白的二维结构显示上,可根据需要选用速度显示、方差显示或功率显示。目前国际市场上彩超的种类及型号繁多,档次开发日新月异,更具高信息量、高解析度、高自动化、范围广、简便实用等特点。

图像特点

不同类型的超声仪有不同的图像特点,因B型超声是最重要的诊断方法,故对其图像特点做以下介绍:

切面声像图的回声描述

1 回声强弱的描述:根据图像中不同灰阶将回声信号分为强回声、等回声、低回声和无回声。而回声强弱或高低的标准一般以该脏器正常回声为标准或将病变部位回声与周围正常脏器回声强度的比较来确定。如液体为无回声,结石气体或钙化为强回声等。正常人体软组织的内部回声由强到弱排列如下:肾窦>胎盘>胰腺>肝脏>脾脏>肾皮质>皮下脂肪>肾髓质>脑>静脉血>胆液和尿液。 2 回声分布的描述:按图像中光点的分布情况分为均匀或不均匀,密集或稀疏。在病灶部的回声分布可用“均质”或“非均匀”表述。 3 回声形态的描述:光团:回声光点聚集呈明亮的结团状,有一定的边界。光斑:回声光点聚集呈明亮的小片状,边界清楚。光点:回声呈细小点状。光环:显示圆形或类圆形的回声环。光带:显示形状似条带样回声。 4 某些特殊征象的描述:即将某些病变声像图形象化地命名为某征,用以强调这些征象,常用的有“靶环”征、“牛眼”征、“驼峰”征、“双筒枪”征等。 5 彩色都卜勒血流显象还可对脏器内或肿块内、外及外周血管的分布、走向、多少、粗细、形态以及血流速度等多项参数加以显示。

超声图像的常见伪像

1 多次反射 超声垂直照射到平整的界面而形成声波在探头与界面之间来回反射,出现等距离的多条回声,强度渐次减弱,尤其与薄层气体所构成的界面上,如肝左叶与胃内气体之间、膀胱回声前部分的细小回声。 2 多次内部混响 超声在靶内来回反射,形成彗星尾征,如子宫内节育环。 3 切片厚度伪像又称部分容积效应。 因声束宽度较宽(即超声切面图的切片厚度较厚)引起。如胆囊内假胆泥样图像。 4 旁瓣伪像 由声束主瓣外的旁瓣反射造成,在结石和肠气等强回声两侧呈现“狗耳”样或称“披纱”样图像。 5 声影 由于前方有强反射或声衰减很大的物质存在,以致在其后方出现声束不能到达的区域即纵条状无回声区称为声影区,利用声影可识别结石、钙化灶和骨骼等。 6 折射声影 超声从低声速介质进入高声速介质,在入射角超过临界角时,产生全反射,以致其后方出现声影,见于球形结构的两侧后方或器官的两侧边缘,又称边缘声影。 7 镜面伪像 超声束投射到表面平滑的人体强回声大界面如横膈面上时,犹如光投射到平面镜上一样,产生相似的实、虚两图像,如横膈两侧出现对称的两个肿块回声。

检查技术

装置

1 实时线阵超声诊断仪:适用于一般的腹部检查,可有多种不同频率探头。主要缺点是探头与人体接触面较大,检查时需要大的透声窗才能使声束有效地经过检查目标。 2 实时扇型超声诊断仪:心脏探查最常用,探头小,便于肋间扫查,缺点是近场视野小。 3 实时凸阵超声诊断仪:凸阵探头具有比扇型探头近场视野大,又比线阵探头远场视野广的优点。 4 彩色和频谱都卜勒超声诊断仪:用于探查心血管、各种器官及病变相关血管,外周血管的血流速度、血流量等血流动力学改变。

探测前准备

一般不必作探测前准备,在探测易受消化道气体干扰的深部器官时,需空腹检查或作更严格的肠道准备。胆囊检查需前晚进清淡饮食,当天禁早餐;妇产科和膀胱前列腺检查要求充盈膀胱;经直肠检查前需排便或 *** ;某些特殊检查另有特别的检查前准备要求,将在具体章节中介绍。

探测方法和 ***

(一)探测方法 1 直接探测法:探头与受检者皮肤或黏膜等直接接触,是常规采用的探测方法。 2 间接探测法:探头与人体之间灌入液体或插入水囊、Proxon耦合(延迟)块等使超声从发射到进入人体有一个时间上的延迟。目的有三:①使被检部位落入聚集区,增加分辨力;②使表面不平整的部位得到耦合;③使娇嫩的被检组织(如角膜)不受擦伤。 (二) *** 超声探测的 *** 因探测部位需要不同,可采用各种 *** ,如仰卧位、左右侧卧位、俯卧位、坐位、立位、截石位、膝胸位等等,无一定限制。将在各论中分别介绍。

诊断与临床套用

B型超声检测技术的临床套用

超声诊断基础着眼于详尽的观察与分析。捕捉各种特征,综合分析病因,研究各种生理情况下的改变,以及结合其他形式进行诊断。 (一)超声图像观察 1 脏器外形及大小、柔度或可动度 各种脏器均有其自然的解剖形态及大小尺寸。观察脏器的轮廓有无形态失常,肿块的形状、位置、大小、数目、范围等,腹腔脏器的活动度等。 2 病灶边缘回声 发现病灶后,观察病灶的边缘回声,有无包膜,是否光滑,壁的厚薄,以及周边是否有晕圈等。 3 后壁及后方回声 由于人体各种正常组织和病变组织对声能吸收衰减不同,故表现后方不同的回声。如含液性的囊肿或脓肿,则出现后壁回声“增强”;而钙化、结石、气体等,则其后方形成“声影”。某些酷似液性病灶的均匀实质性病灶,后方则无回声增强效应。 4 内部结构特征 可分为结构如常,正常结构消失,界面的增多或减少、界面散射点的大小与均匀度的不同以及其他各种不同类型的异常回声等。 5 周邻关系 根据局部解剖关系判断病变与周邻脏器的连续性,有无压迫、粘连或浸润。 6 功能性检测 如套用脂餐试验观察胆囊的收缩功能。空腹饮水后,测定胃的排空功能及收缩蠕动状态等。 (二)常见的病理性图像特点 1囊性与实质性病变 超声对液体与实质组织有着显著的图像差别,因而很好鉴别。 2 均质性与非均质性病变 均质性病变呈均匀一致的低回声、等回声或强回声,非均质性病变则呈复杂的回声结构。 3 钙化性与含气性病变 钙化性病变图像稳定,声影清晰,含气性病变图像不稳定,声影混浑。 4 炎性与纤维化病变 急性炎症早期以水肿为主,局部回声减低,脏器肿胀,经线值增大;慢性炎症纤维组织增加,回声增粗增多。 纤维化病变多呈强回声,按其病变程度不同而表现不同。如血吸虫肝纤维化呈典型的“地图”样改变。 5 良性与恶性病变 一般而言,良性病变质地均匀、界面单一故回声均匀、规则。恶性病变因生长快,伴出血,变性,瘤内组织界面复杂不均匀,表现为不规则的回声结构。 如(1)肿瘤边缘:①有:良性或恶性未向外伸展;②假边缘:光晕圈,水牛眼;③规则:良性、恶性均可;④分界截然:良性为多;⑤不规则,伪足伸展:恶性为多。 (2)内部回声:①均匀:良性较大;②不均:恶性较大。 (3)内部其他结构:①正常:多为良性;②异常:多为恶性。 (4)后方回声:①正常或增强:多为良性;②正常或减弱:多为恶性。 (5)侵入或转移:阻塞或侵入管道、邻近组织及/或脏器扩散或转移者考虑为恶性。

超声都卜勒检测技术的临床套用

超声都卜勒是近年来迅速发展的一种检测技术,随着电子学的进步,此法在临床上得到日益广泛的套用,对心脏疾病、周围血管疾患实质器官的血流灌注、小器官血流供应、占位性病变血供情况及胎儿血液循环的检查上具有重大的价值。 (一)鉴别液性暗区的性质 在切面超声显像图上常见有各种形式的液性暗区,可分别代表脓腔、积液、胆汁、尿液、羊水或血液等,一般情况下根据解剖部位、周围轮廓、径线长短及连续关系等,其性质易于区分,但有时因断面复杂,暗区较多,在鉴别时很困难。进行都卜勒检查时因动脉、静脉及静止的液腔有明显的不同,对鉴别性质有很大帮助。如肝内胆管高度扩张时,某一断面很难区分门静脉与扩张的胆管,彩色血流显像加上去,门静脉有彩色血流显示并有典型门静脉频谱,而胆管无血流显示。再如诊断下肢深静脉血栓时,首先要用彩色都卜勒鉴别并行的两条血管哪一条为动脉,哪一条为静脉,然后再行进一步追踪检查。 (二)鉴别器官及病变组织的血供 彩色都卜勒血流显像及能量图可以清晰显示脏器的正常血供,当有病变或新生占位性病灶出现时,通过血流显示可以做出具有重要意义的鉴别诊断。甲亢病人甲状腺血供异常丰富,呈典型特征的“火海”征;肝脏肿瘤如原发性肝癌则可探及肿瘤内部及周边血供丰富,并见动脉频谱;如血管瘤则血流很少,无动脉频谱。 (三)探测血流速度 人体任何一条血管及心瓣膜口的血流速度都有一定的正常范围,如二尖瓣口舒张期峰值速度60cm/s~130cm/s,门静脉右支主干的峰值速度在18cm/s左右。血流速度参数有峰值速度、加速度、减速度、平均速度、速度积分等,通过以上参数可对血流动力学异常做出判断。 (四)估计压力差 利用数学公式-简化的伯努利方程:P1-P2=4V2(P1、P2分别代表所测瓣口前后的压力,V为通过瓣口时的血流速度),可以测出瓣口前后的压力差,间接反映血流是否通畅,有无狭窄,并可通过测三尖瓣返流速度推算肺动脉压力。 (五)测量血流量 血流通过某一管腔时,其血流量(Q)与血流速度(V)快慢、管腔面积(A)大小及血流时间(T)长短有密切关系,Q=V·A·T。根据以上公式,大部分彩色都卜勒血流显像仪在描记血流频谱轮廓并标志管腔两侧壁的位置后,均能自动计算血流量,对临床帮助很大。

超声成像原理

阵列声场延时叠加成像是超声成像中最传统,最简单的,也是目前实际当中套用最为广泛的成像方式。在这种方式中,通过对阵列的各个单元引入不同的延时,而后合成为一聚焦波束,以实现对声场各点的成像。

『伍』 超声波什么特性和应用

一、超声波的特点

1、方向性好,几乎沿直线传播。

2、穿透能力强,甚至能透过几米厚的金属。

3、易于获得较集中的声能。

二、超声波的应用

1、声呐系统,测距离

2、蝙蝠导航,回声定位

3、超声波诊断仪,B超

4、 探测金属内部缺陷,探伤仪

5、超声波清洗器

6、超声波焊接器

7、超声波吸脂

8、超声波美容

(5)超声波透射法对人体有什么影响扩展阅读

国内在超声治疗领域起步稍晚,于20世纪50年代初才只有少数医院开展超声治疗工作,从1950年首先在北京开始用800KHz频率的超声治疗机治疗多种疾病,至50年代开始逐步推广,并有了国产仪器。

公开的文献报道始见于1957年。到了70年代有了各型国产超声治疗仪,超声疗法普及到全国各大型医院。40多年来,全国各大医院已积累了相当数量的资料和比较丰富的临床经验。

特别是20世纪80年代初出现的超声体外机械波碎石术和超声外科,是结石症治疗史上的重大突破。如今已在国际范围内推广应用。高强度聚焦超声无创外科,已使超声治疗在当代医疗技术中占据重要位置。而在21世纪(HIFU)超声聚焦外科已被誉为是21世纪治疗肿瘤的最新技术。

『陆』 超声波的原理是什么啊

1超声波简介

我们把频率高于20KHz的声波称为超声波,超声波具有良好的方向性和穿透能力,特别是在水中,传播距离更远。无论是在军事上、农业上还是在生活中都有广泛的应用,可以用来测速度、测距离、消毒杀菌、清洗、焊接等。

人耳能听到的超声波频率范围大概是20Hz-20KHz,超声波的频率大于人类听觉上限,因此叫做“超声波”。

超声波与普通声波一样,也具有反射、折射、衍射、散射等特点,但是超声波的波长较短,有的是几厘米,低至千分之几毫米。波长越短,声波的衍射特性就越差,可以在介质中稳定地进行直线传播,因此波长较短的超声波具有很强的直线传播能力。众所周知,声音在空气中传播时,会推动空气中的粒子振动做功,而声波功率的大小表示声波做功快慢,在相同环境下,声波的频率越高功率就越大。超声波的频率大于20KHz,因此超声波的功率较高。

超声波主要有两个参数:

频率:F≥20000Hz(通常把F≥15000Hz的声波也称为超声波);

功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm。

超声波具有如下特性:

(1)超声波具有在气体、液体、固体等介质中进行效传播的能力。

(2)超声波具有很强的传递能量的能力。

(3)超声波具有反射特性,还会产生干涉、叠加和共振现象。

(4)超声波在液体介质中传播时,可在界面上产生空化现象和强烈的冲击。

超声波的特性及工作原理

2超声波用途

超声波在生活中的很多方面都有应用,主要有以下几个方面:

1)医学方面

在医学方面,超声波主要应用为医学诊断与临床治疗。医学诊断中,超声波的主要应用为B超。由于超声波具有反射、折射等特点,如果将超声波发射到人体内,它就会在人体内部发生反射,人体内部各个形状大小都不一样,因此反射回来的声波方向、强度等信息也不同,医生通过对反射回来的声波进行分析,再结合一些医学方面的专业知识,就可以知道人体内部的某些部位是否产生病变。

在临床治疗中,超声波主要被用来杀死肿瘤细胞和超声针灸,我们知道超声波的功率很大,利用医学影像技术,将多束超声波聚焦在病变的细胞上,控制好照射的强度和时间,短时间的温度将达到70~100℃,在保护周围组织的同时杀死了病变细胞。

超声针灸就是利用超声波技术来刺激穴位,这种疗法对组织没有损伤,而且具有无痛、无不适应等优点,在治疗小孩子或者一些害怕针灸的患者时有很好的效果。此外,超声波在体外碎石,理疗、牙科等方面也经常使用。

2)超声清洗

超声清洗主要基于空化作用,空化作用总体上就是在有压力和无压力作用时,每一秒都进行着几万次这样的变换,超声波在液体内部不断地进行透射作用,在没有压力作用时,液体内部就会出现真空核泡群,在有压力作用时,真空核泡群在压力的作用下产生强大的冲击力,因此可以带走物体表面的污垢,完成清洗工作。一些表面凹凸不平的器件,或者特别小难以清洗的部件,例如钟表、电子元器件、电路板等都可以达到很好的清洗效果。而且随着超声波频率的升高,空化作用的效果会减弱,因此超声波清理的效果很好却不会伤害到器件表面。

3)超声测距

由于超声波的波长相对较短,具有良好的方向性和穿透能力,能量消耗的比较慢,在介质中传播距离较远。而且超声测距的原理简单,比其他的测距方式都方便容易操作,计算也比较简便,测量精度也能满足要求,因此在一些移动式机器人或者导盲系统中有广泛的应用。

『柒』 什么是超声波

什么是超声波?
超声波 我们知道,当物体振动时会发出声音。

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为16~20,000赫兹。

因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。

虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。

大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。

我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。

医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。

医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。

此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。 目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。

A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。

B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。

M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。

D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。

新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。

现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。

频率高于20000 Hz(赫兹)的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。

产生 超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、 以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。 超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生 一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应: ①机械效应。

超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。

超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。 ②空化作用。

超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。

另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。

因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。

与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。

③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。

④化学效应。超声波的作用可促使发生或加速某些化学反应。

例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处。
【什么是超声波?超声波分类及应用】
超声波技术是一门以物理、电子、机械及材料学为基础的通用技术之一.超声波技术是通过超声波产生、传播及接收的物理过程而完成的.超声波具有聚束、定向及反射、透射等特性.超声波的应用超声波测液位超声波液位计按超声振动幅射大小不同大致可分为:1、用超声波使物体或物性变化的功率应用称功率超声,例如:在液体中发生足够大的能量,产生空化作用,能用于清洗、乳化.2、用超声波得到若干信息,获得通信应用,称检测超声,例如:用超声波在介质中的脉冲反射对物体进行厚度测试称超声测厚.超声波测厚及应用在工业领域中超声波测厚是一门成熟的高新技术,它的最大优点是检测安全、可靠及精度高,而且它可以巡回在运行状态进行检测.超声测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种.由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表.超声波测厚仪主要有主机和探头两部分组成.主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度.。
超声波的意思是什么?
超声波:频率高于20000 Hz的声音叫做超声波。(蝙蝠、海豚等可发出超声波)

其定义,可能是因为此种声波超过人类听力频率范围的上限,故称为超声波。

详细说明:

(1)人耳听觉范围:20Hz-20000Hz。其中20 Hz是人类听觉的下限,20000 Hz是人类听觉的上限。

(2)超声波:频率高于20000 Hz的声音叫做超声波。(蝙蝠、海豚等可发出超声波)

(3)次声波:频率低于20 Hz的声音叫做次声波。(地震、海啸、台风、火山喷发等可发出次声波)

希望帮助到你,若有疑问,可以追问~~~

祝你学习进步,更上一层楼!(*^__^*)
“超声波”是什么意思?
超声波:

是一种频率高于20000赫兹的声波。可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大于人的听觉上限而得名。

超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介如B超等用作诊断;超声波同时又是一种能量形式。

超声波的特点:

1,在传播时,方向性强,能量易于集中。

2,能在各种不同媒质中传播,且可传播足够远的距离。

3,与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及用于治疗。

4, 可在气体、液体、固体、固熔体等介质中有效传播。

5,可传递很强的能量。

6,会产生反射、干涉、叠加和共振现象。

超声应用:超声效应已广泛用于实际,主要有如下几方面:

1,超声检验

2,超声处理

3,超声波清洗

4,超声波加湿器

5,基础研究

6,超声除螨

7,超声除油

8,超声波空泡炼油化学原理

9,医学超声波检查

10,工业自动化控制

11,超声波制药

12,超声波对化妆品的分散

13,超声波对酒的醇化—催陈技术
超声波是什么?
我们知道,当物体振动时会发出声音。

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20,000赫兹。

当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。

通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。

可用于测距,测速,清洗,焊接,碎石等。在医学,军事,工业,农业上有明显的作用. 理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度.这就是超声波加湿器的原理.咽喉炎.气管炎等疾病,药品很难血流到达患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效.利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。
什么是超声波?是干什么用的?
超声波是指振动频率大于20KHz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在 2∽5MHz之间,常用为3∽3.5MHz(每秒振动1次为1Hz,1MHz=106Hz,即每秒振动100万次,可闻波的频率在16-20,000HZ 之间)。

超声波有很多用途,如:

1.超声焊接

2.超声雾化

3.超声钻孔

4.超声分散

5.超声切削

6.超声电火化联合加工

7.超声波清洗
什么是超声波?超声波分类及应用
超声波技术是一门以物理、电子、机械及材料学为基础的通用技术之一。超声波技术是通过超声波产生、传播及接收的物理过程而完成的。超声波具有聚束、定向及反射、透射等特性。

超声波的应用

超声波测液位

超声波液位计按超声振动幅射大小不同大致可分为:

1、用超声波使物体或物性变化的功率应用称功率超声,例如:在液体中发生足够大的能量,产生空化作用,能用于清洗、乳化。

2、用超声波得到若干信息,获得通信应用,称检测超声,例如:用超声波在介质中的脉冲反射对物体进行厚度测试称超声测厚。

超声波测厚及应用

在工业领域中超声波测厚是一门成熟的高新技术,它的最大优点是检测安全、可靠及精度高,而且它可以巡回在运行状态进行检测。超声测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种。由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表。 超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度。
什么是超声波?
超声波是超过人的听觉阈有一定频率的波,它通常在每秒 20 000周或2万赫兹。

在医学超声中,由压电晶体的探头产生声波。 当把探头放在皮肤表面时,就可以使组织内的分子发生振动而产生 声波。

当超声波透过组织运行时,会接触到一些界面(如肝脏、骨骼 等)并且只有一部分声波被反射回探头。这样就会在屏幕上产生影 像,余下的声波可能会反射到探头以外或者被组织吸收(这个过程叫 衰减),超声波穿透组织的速度是各异的,如通过空气的速率为330 米/秒,穿过肺的速率是600米/秒,穿过肝的速率为1 555米/秒,而 透过头颅的速率是4 000米/秒,产生在屏幕上的图像由不同组织的 传导速率不同所致(如同通过窗户来区分二个器官和另一器官)。

阅读全文

与超声波透射法对人体有什么影响相关的资料

热点内容
压下装置的作用和安装 浏览:970
换机械瓣膜要注意什么 浏览:33
铸造沙芯用什么涂料好清理 浏览:715
塑钢电动工具 浏览:750
取消自动启停装置 浏览:81
戴森吹风机电机轴承怎么拆 浏览:968
老款揽胜的仪表年月日怎么调 浏览:177
提示连接usb无法识别usb设备怎么办 浏览:932
机械装备工程师证怎么考 浏览:847
机械能的增加与减少与什么有关 浏览:374
济南装饰五金批发市场 浏览:857
八代凯瑞美仪表平均速度怎么调 浏览:165
阀门有个叫是什么菜 浏览:277
上硅设备哪个最好 浏览:51
机械原理如何判断动平衡 浏览:581
熔模铸造用什么金属 浏览:593
轴承钢球单数游隙怎么计算 浏览:948
自动化一体装置怎样 浏览:105
如何评价实验方案和实验装置如下图所示 浏览:972
pam一体化自动加药装置 浏览:825