❶ 数控机床用刀具需要刃磨吗
标准刀片是不刃磨的,不能用了就更换。
高速钢刀具高速钢通常是型坯材料,韧性较硬质合金好,硬度、耐磨性和红硬性较硬质合金差,不适于切削硬度较高的材料,也不适于进行高速切削。高速钢刀具使用前需生产者自行刃磨,且刃磨方便,适于各种特殊需要的非标准刀具。
数控加工刀具可分为常规刀具和模块化刀具两大类。模块化刀具是发展方向。发展模块化刀具的主要优点:减少换刀停机时间,提高生产加工时间;加快换刀及安装时间,提高小批量生产的经济性;提高刀具的标准化和合理化的程度;提高刀具的管理及柔性加工的水平;扩大刀具的利用率,充分发挥刀具的性能;有效地消除刀具测量工作的中断现象,可采用线外预调。由于模块刀具的发展,数控刀具已形成了三大系统,即车削刀具系统、钻削刀具系统和镗铣刀具系统。
(一)从结构上可分为
①整体式
②镶嵌式可分为焊接式和机夹式。机夹式根据刀体结构不同,分为可转位和不转位;
③减振式当刀具的工作臂长与直径之比较大时,为了减少刀具的振动,提高加工精度,多采用此类刀具;
④内冷式切削液通过刀体内部由喷孔喷射到刀具的切削刃部;
⑤特殊型式如复合刀具、可逆攻螺纹刀具等。
(二)从制造所采用的材料上可分为
①高速钢刀具
②硬质合金刀具硬质合金刀片切削性能优异,在数控车削中被广泛使用。硬质合金刀片有标准规格系列产品,具体技术参数和切削性能由刀具生产厂家提供。
硬质合金刀片按国际标准分为三大类:P类,M类,K类。
P类——适于加工钢、长屑可锻铸铁(相当于我国的YT类)
M类——适于加工奥氏体不锈钢、铸铁、高锰钢、合金铸铁等(相当于我国的YW类)
M-S类——适于加工耐热合金和钛合金
K类——适于加工铸铁、冷硬铸铁、短屑可锻铸铁、非钛合金(相当于我国的YG类)
K-N类——适于加工铝、非铁合金
K-H类——适于加工淬硬材料
❷ 数控刀具怎么磨
把粗加工刀具用手摇脉冲发生器先对切削加工后的外圆D。用手摇脉冲发生器在Z轴正方向摇出工件,输入D值。记下X轴显示的具体数据。
用手摇脉冲发生器在X轴所显示记录的数据上向负方向进给1~2mm。同样用手摇脉冲发生器在Z轴负方向进给,刀具切削到工件即可。
在加工过程中,当粗车刀片磨损到极限后,把精车刀片换到粗车刀具上,精车刀具重新换新刀片。这样能在保证螺纹切削加工精度的同时,也降低刀具费用。该方法关键取决于对粗、精螺纹刀具的对刀精度。
不同材质的砂轮磨粒适合于磨削不同材质的刀具。刀具的不同部位需要使用的磨粒大小也不同,以确保刃口保护和加工效率的最佳结合。
(2)机床的刀具都进行什么处理扩展阅读
数控刀具的注意事项
1、在数控车床上进行螺纹加工时,通常采用一把刀具进行切削。在加工大螺距螺纹时,因刀具磨损过快,会造成切削加工后螺纹尺寸变化大、螺纹精度低。
2、各把刀具在对X轴时,机床显示的数字各不相同。一定要记录好各把刀具的实际数据。在退出X轴后,多把螺纹切削刀具X轴进刀的数据一定要相同,不能有差异。
3、刀具在切削过度中承受很大的压力,有时在冲击和振动条件下工作,要使刀具不崩刃和折断,刀具材料必须具有足够的强度和韧性,一般用抗弯强度表示刀具材料的强度。
❸ 机床对刀是如何进行的
机床加工工件前都要先行对刀,一般是让刀具缺梁转起来,慢慢的接近工件的表面,当刀具蹭到工件表面时,就可以把机床的刻度盘对零。然后,就可以确定进刀的深度,就可以加工了。对于一些精度要求高的工件的加工,可以使拿纤用专门用来对刀的分中棒进行伏敏运对刀。
❹ 数控机床对刀详细的过程
方法是多种的,而且互有联系,没办法只介绍一种。
1、对刀方法:数控加工的对刀,对其处理的好坏直接影响到加工零件的精度,还会影响数控机床的操作。
所谓对刀,就是在工件坐标系中使刀具的刀位点位于起刀点(对刀点)上,使其在数控程序的控制下,由此刀具所切削出的加工表面相对于定位基准有正确的尺寸关系,从而保证零件的加工精度要求。在数控加工中,对刀的基本方法有试切法、对刀仪对刀、ATC对刀和自动对刀等。
2、试切法:根据数控机床所用的位置检测装置不同,试切法分为相对式和绝对式两种。在相对式试切法对刀中,可采用三种方法:
一是用量具(如钢板尺等)直接测量,对准对刀尺寸,这种对刀方法简便但不精确;
二是通过刀位点与定位块的工作面对齐后,移开刀具至对刀尺寸,这种方法的对刀准确度取决于刀位点与定位块工作面对齐的精度;
三是将工件加工面先光一刀,测出工件尺寸,间接算出对刀尺寸,这种方法最为精确。在绝对式试切法对刀中,需采用基准刀,然后以直接或间接的方法测出其他刀具的刀位点与基准刀之间的偏差,作为其他刀具的设定刀补值。以上试切法,采用“试切——测量——调整(补偿)”的对刀模式,故占用机床时间较多,效率较低,但由于方法简单,所需辅助设备少,因此广泛被用于经济型低档数控机床中。
3、对刀仪对刀:对刀仪对刀分为机内对刀仪对刀和机外对刀仪对刀两种。机内对刀仪对刀是将刀具直接安装在机床某一固定位置上(对车床,刀具直接安装在刀架上或通过刀夹再安装在刀架上),此方法比较多地用于车削类数控机床中。
而机外对刀仪对刀必须通过刀夹再安装在刀架上(车床),连同刀夹一起,预先在机床外面校正好,然后把刀装上机床就可以使用了,此方法目前主要用于镗铣类数控机床中,如加工中心等。
采用对刀仪对刀需添置对刀仪辅助设备,成本较高,装卸刀具费力,但可节省机床的对刀时间,提高了对刀精度,一般用于精度要求较高的数控机床中。
4、ATC对刀:AIC对刀是在机床上利用对刀显微镜自动计算出刀具长度的方法。由于操纵对刀镜以及对刀过程还是手动操作和目视,故仍有一定的对刀误差。
与对刀仪对刀相比,只是装卸刀具要方便轻松些。自动对刀是利用CNC装置的刀具检测功能,自动精确地测出刀具各个坐标方向的长度,自动修正刀具补偿值,并且不用停顿就直接加工工件。
与前面的对刀方法相比,这种方法减少了对刀误差,提高了对刀精度和对刀效率,但需由刀检传感器和刀位点检测系统组成的自动对刀系统,而且CNC系统必须具备刀具自动检测的辅助功能,系统较复杂,投入资金大,一般用于高档数控机床中。
5、自动对刀:自动对刀是利用CNC装置的刀具检测自动修正刀具补偿值功能,自动精确地测出刀具各个坐标方向的长度,并且不用停顿就直接加工工件。自动对刀亦称刀尖检口功能。
在加工中心上一次安装工件后,需用刀库中的多把刀具加工工件的多个表面。为提高对刀精度和对刀效率,一般采用机外对刀仪对刀、ATC对刀和自动对刀等方法,其中机外对仪对刀一般广泛用于中档铿铣类加工中心上。
在采用对刀仪对刀时,一般先选择基准芯棒对准好工件表面,以确定工件坐标原点,然后选择某一个方便对刀的面,采用动态(刀转)对刀方式。
(4)机床的刀具都进行什么处理扩展阅读
例子如下:
例如,当加工零件时,如果按φ38㎜→φ36㎜→φ34㎜的次序安排车削,不仅会增加刀具返回对刀点所需的空行程时间,而且还可能使台阶的外直角处产生毛刺(飞边)。
对这类直径相差不大的台阶轴,当第一刀的切削深度(图中最大切削深度可为3㎜左右)未超限时,宜按φ34㎜→φ36㎜→φ38㎜的次序先近后远地安排车削。
❺ 机床切削加工都有哪些方式
金属切削机床的运动形式及切削方式机床的运动可分为主运动和进给运动。主运动是切削金属最基本的运动,它促使刀具和工件之间产生相对运动,从而使刀具前面接近工件;进给运动使刀具与工件之间产生附加的相对运动,加上主运动,即可不断地或连续地切削,并得出具有所需几何特性的加工表面。机床种类不同,切削方式、工件和刀具的运动形式就不同,对安全的要求也不同。有的切削方式以工件作主运动,刀具作进给运动;有的以刀具作主运动,工件作进给运动。常见的切削方式有:
(1)车削:工件旋转作主运动,车刀作进给运动。
(2)铣削:铣刀旋转作主运动,工件或铣刀作进给运动。
(3)刨削:用刨刀对工件作水平相对直线往复运动,如牛头刨床滑枕带动刀具作主运动,工作台带动工件作间歇的进给运动。
(4)钻削:钻头或扩孔钻在工件上加工,一般是钻头作主运动及进给运动,而工件不动。
(5)铰削:用铰刀从工件孔壁上切除微量金属层,以提高其尺寸精度和表面光洁度。铰刀旋转作主运动,工件或铰刀作进给运动。
(6)镗削:镗刀旋转作主运动,工件或镗刀作进给运动。
(7)插削:插刀对工件作垂直相对直线往复运动,工件或插刀作进给运动。
(8)磨削:用磨具如砂轮以较高线速度对工件表面进行磨削加工,磨具旋转作主运动,工件作进给运动。
切削加工方式还有珩磨、超精加工、拉削、推削、铲削、刮削等。以上切削方式中,用得最多的是车削和磨削。
❻ 数控加工怎样进行刀具路径的后置处理
后处理技术
经过自动编程刀具轨迹计算产生的是刀位数据(Cutter location date)文件,而不是数控程序。因此,这时需要设法把刀位数据文件转变成指定数控机床能执行的数控程序,然后采用通信的方式或DNC方式输入数控机床的数控系统,才能进行零件的数控加工。把刀位数据文件转换成指定数控机床能执行的数控程序的过程就称为后置处理。刀位数据文件必须经过后置处理转换成数控机床各轴的运动信息后,才能驱动数控机床加工出设计的零件。后处理程序是在设计完成的待加工零件模型基础上,对已安排好的加工方式、刀具选择、下刀方式、刀路安排及切削参数等工艺参数进行运算,并编译生成机床能识别的G代码。这一步的代码处理准确与否,直接关系到零件的加工质量及数控机床的安全。
在安装数控编程软件(CAD/CAM)时系统会自动设置好一些后置处理程序,当编程者采用的数控系统与之相对应,就可以直接选择相对应的后置处理程序,而实际加工时选择的后置处理程序也应与编程者的数控系统相一致,所以在利用编程软件进行数控编程时,必须对后处理器进行必要的设定和修改,以符合编程格式和数控系统的要求。若编程人员在数控编程时不了解数控系统的基本要求,没有对后处理程序进行设置,结果生成的数控代码中就会有很多错误或多余的指令格式。这就要求在程序传人数控机床前,必须对NC程序进行手动增加或删减,如果没有修改正确,极易造成事故。