⑴ 液压机床的液压系统噪音大
液压传动的机床,由于各液压元件脉动和系统中共振的缘故,往往会发生和谐有节奏的声音,这是正常的现象。但如果系统吸入大量空气后会发出连续不断的嗡瓮……的噪音,有时侯也会发出其他的杂音,主要发生于油泵中心线以下的低压区;另一种是有规律的或无规律的断续发出吱嗡、吱嗡十分刺耳的噪音,主要是溢流阀及电磁阀等失灵而引起。
噪音,它不仅使人的大脑疲劳,而且影响液压系统的工作性能,降低液压元件的使用寿命。同时振动与其伴随发生,因此它将影响加工精度、降低切削树速度及走刀量等直接降低生产率。
噪音是通过人的感觉器官——耳朵反映到头脑中来的,当我们可以听到噪音时,首先能寻找发出噪音的部位,但不能马上着手解决,要具体地,详尽地分析噪音发生的根源,然后对诊下药采取有效措施消除噪音。
1.由油泵处发出的噪音,它有外部因素和内部因素两个方面。
外部因素:A.油泵的吸油口密封不严,而引起空气侵入。应拧紧进油口螺帽。
B.油池中油液不足。应加油至油标线以上。
C.油液黏度太大增大了流动阻力。应更换合适的黏度较小的油液。
D.吸油管侵入油池太少。将吸油管侵入油池的2/3高度处。
E.滤油器被污物阻塞。必须清除附着在滤油器上的污物。
内部因素:油泵的流量是脉动的,各个工作油腔内流量和压力是周期变化的,所以油泵径向和轴向的间隙由于磨损而增大,高压腔反复周期地向低压腔泄漏引起压力波动油量不足发出噪音。同样齿轮泵的齿形精度不高;叶片泵的叶片卡死、断裂或配合不良;柱塞泵的柱塞卡死或移动不灵活;泵内的滚针、滚动轴承的损坏都会引起噪音。一般象这种情况对油泵的修复工作比较精细需专业人员来修正调整,通常现场通过更换油泵来缩短检修时间。
2.控制阀作用失灵。控制阀它包括溢流阀、单向阀、电磁阀、节流阀、换向阀等 ,
就溢流阀来讲,当运动部件换向(反向)时,油泵仍继续不断地输出压力油,必
然引起系统压力升高。压力升高时,大量油液通过溢流阀克服调整弹簧排出。油
液排出系统后,调整弹簧复位。因此弹簧的性能不良,则引起振动并发生噪音。
引起控制阀作用失灵不外乎下述几个方面:
A.调压弹簧永久变形或扭曲损坏 ,此时应更换调压弹簧。
B.阀座钢球损坏、锥阀磨损密封不良,此时应更换钢球或修磨锥阀。
C.工作油液不清洁,油中杂质进入阀体将阻尼孔堵塞,此时应清除阀内污物,疏通阻尼孔。
D.滑阀与阀体配合间隙过大,高低压油互通。滑阀拉毛、变形移动不灵活。此时应研磨阀体孔,清除毛刺或更换滑阀重配间隙,使其移动灵活无阻滞现象。
E.节流阀的节流口小易产生涡流发出噪音,此时只要减小进、出油口压差。
F.电磁阀电极焊接不好接触不良;弹簧损坏或过硬;滑阀在阀孔中卡死也会发出噪音,此时可重新焊接,更换弹簧,研磨阀体孔使其移动灵活。
3. 油管管道没有用管夹固定重叠在一起造成进、回油管互相碰击,或吸油管与回油管相离太近引起噪音,此时应尽可能使管道之间保持一定距离,将吸油管和回油管两者离的远一点。
4. 其他方面比如油泵和电机联轴器不同轴或松动、碰撞;电机轴承损坏、风扇不平衡等都可能产生噪音。这些需要维修人员及时调整。
⑵ 数控机床有哪些知识-数控机床基础知识的笔记
数控机床有哪些知识-2017年关于数控机床基础知识的笔记
为帮助大家对数控机床有更深的认识,下面,我为大家分享数控机床基础知识的笔记,希望对大家有所帮助!
★数控机床是由哪几部分组成的?
数控装置是数控机床的核心(相当于人的大脑),它所想要完成的工作通过伺服系统(相当于人的神经系统)带动机床运动,测量及反馈系统(相当于人的 眼睛等感觉器官),把机床的工作状态急时告诉数控装置。数据传输系统的作用是:由于数控装置的容量有限,各种控制信息要靠数控装置以外的其它计算机等携带和传输,就像人的记忆有限,工作时常常要做些记录,翻翻笔记本似的,作为数控机床的核心深扬公司选用的是世界三大系统制造商之一的日本原装三菱数控系统。
★数控机床到底控制的是什么?
从数控机床最终要完成的任务看,主要以下三个方面:
1)主轴运动控制;
2)进给运动控制(也就是对工作台运动的控制);
3) 输入/输出(I/O) 控制,也就是对机床的各种状态的控制.如:冷却、润滑、起停刀具自动交换等。
★按工艺内容分类(特别是在模具制造中)数控机床有哪几类?
1)数控铣床随着模具制造工艺要求的提高,立式数控铣床已成为主流,既工作台不能上下移动,Z轴是通过主轴箱的上下运动实现的,根据我国目前的国情看该类机床将是传统机床)的主要更新换代产品。
2)加工中心:加工中心与数控铣床的区别在于,加工中心配有可自动换刀的装置和刀库系统,在华南一带也有将全封闭立式数控铣床和加工中心都统称为加工中心,只是把前者叫做不带刀库的加工中心。
3)线切割机床 :这类机床在模具加工中是最为广泛,也是最为独特的一种数控机床,它是很难被其它加工工艺所取代的。
4)电火花成型机床:它是模具型腔加工必不可少的设备,由于是高速铣削技术的发展,成型机的市场面临新的挑战,所以我公司的电火花成型机产品的发展是把性能价格比放在首位,不盲目扩张,而是发展中等规格的单轴数控电火花成型机床,广泛应用于广东及东南亚市场。
★数控机床的机械部分是由哪几部分组成的?
典型的数控机床的机械结构主要由基础件、主轴传动系统、进给传动系统、回转工作台、自动换刀装置以及其它机械功能部件组成。
基础件主要是指床身、立柱、工作台、主轴箱体等大件。除特殊情况有采用板焊材料、人造花岗岩材料外绝大部分都是用铸铁材料。由于台湾机床的涌入,现在常听到一种叫“米汉纳”的铸铁。让广大用户摸不着头实际就是个英文的译音,是个外来语。不外乎是一种机械强度比较好的铸铁,也就是相当于我们常说的HT250、HT300铸铁而已。我公司的铸铁均为HT300树脂沙造型,各导轨采用中音频淬火硬度度深度达5mm,其铸件质量完全可以同那个叫“米汉纳”的叫板。
其它机械功能部件,主要指润滑、冷却、排屑和监控机构。
★什么叫数控机床?经常提到的“CNC”是什么意思?
国际信息处联盟第五技术委员会对数控机床的.定义是这样的:数控机床是一种安装了程序控制系统的机床。该系统能逻辑地处理具有使用号码或其他符号编码指令规定的程序。
“CNC”中第一个“C是”英文“计算机”的第一个字母,“N”是英文“数字”的字头;最后一个字母“C”是英文“控制”的第一个字母。所以“CNC”系统用汉语说就是“计算机数字控制系统”。“CNC”系统是数控机床的核心部分。数控机床功能的强弱主要是由数控功能确定的。
★数控机床特点有哪些?
1) 加工精度高:
数控机床是精密机械和自动化技术的综合体。机床的数控装置可以对机床运动中产生的位移、热变形等导致的误差,通过测量系统进行补偿而获得很高且稳定的加工精度。由于数控机床实现自动加工,所以减少了操作人员素质带来的人为误差,提高了同批零件的一致性。
2)生产较高:
就生产效率而言,相对普通机床,数控机床的效率一般能提高2~3倍、甚至十几倍。主要体现在以下几个方面:
a.一次装夹完成多工序加工,省去了普通机床加工的多次变换工种、工序间的转件以及划线等工序。
b.简化了夹具及专用工装等,由于是一次装夹完成加工。所以普通机床多工序的夹具省去了,即使偶尔必须用到专用夹具。由于数控机床的超强功能夹具的结构也可简化。
3)减轻劳动强度,数控机床的操作由体力型转为智力型。
4)改善劳动条件,如深扬公司的产品采用全封闭护罩,机床不会有水、油、铁屑溅出,可有效保持工作环境的清洁。
5)有利于生产管理:
a.程序化控制加工、更换品种方便;
b.一机多工序加工,减化生产过程的管理,减少管理人员;
c.可实现无人化生产。
★数控系统是由哪几个模块组成的,应如何较形象地理解它?
模块是在自动化控制技术中常用的一种形象化的说法。它是把某一种功能相对独立的一组元器件成品也可能还包括软件,形象地理解为了一个“块”,由此说来数控机床的数控系统也是由若干个“模块”组成的。
1)微机控制系统:
数控机床的核心是数控系统,数控系统的核心是微机数控系统(就是几张电路板放在一个盒子里)。微机控制的核心是中央处理器(通称CPU)一个长满脚的深色的薄的小方块,就像一个人一样。人的核心是脑袋,脑袋的核心是大脑,大脑的核心是中枢神经。
2)可编程控制器(简称PLC):
PLC是用来实现辅助化控制的。如换刀、润滑、冷却等。它是微机系统的补充,目的是让微机系统把全部精力用于对零件加工的高精度控制上。不要为其它的辅助的“后勤”琐事分散精力。PLC按配置方式分内装型和外装型。但现在较高档次的PLC都采用内装型。
3)进给伺服控制模块
数控机床对进给轴的控制要求很高,它直接关系到机床位置、控制精度。进给伺服系统一般由速度控制与位置控制两个环节组成。
4)主轴控制模块
主要任务是控制主轴转速和主轴定位。主轴电机有交流伺服电机和交流变频电机。所以相应的驱动装置也会为数字式交流伺服控制以及变频调速控制。
5)测量模块 完成主轴和进给的位置测量。检测装置有光电编码器、光栅尺等
6)输入、输出及通信模块 完成程序的输入、输出,传递人、机界面所需的各种信息。
★刀库有哪几种结构形式,它们的特点是什么?
刀库的容量、布局,针对不同的加工中心,其形式也是五花八门。但是根据刀库所需的容量和取刀方式主要分以下几种:
1)单盘式刀库及无机械手换刀机构
单盘式刀库俗称斗笠式刀库(像个大斗笠),一般只能存16~24把刀具。不能太多,太多的话这个 “斗笠”就太大了,放不下了。这种斗笠式刀库在换刀时整个刀库向主轴移动。当主轴上的刀具进入刀库的卡槽时,主轴向上移动脱离刀具,这时刀库转动。当要换的刀具对正主轴正下方时主轴下移,使刀具进入主轴锥孔内,夹紧刀具后,刀库退回原来的位置。
2)链式刀库及换刀机械手
链式刀库的特点是存刀多。一般都在20把以上,多的可以存100把。它是通过链条将要换的刀具传到指定位置。由机械手把刀装到主轴上,全部换刀动作均采用电动机加机械凸轮的结构。结构简化、工作可靠,但是价格很高。
斗笠式刀库的换刀时间为5~7秒,而机械手的换刀时间是2~3秒。斗笠式的刀库的换刀时间虽说比机械手慢,可它不过也只有5~7秒的时间。作为中国的企业这种效率完全可以接受了。所以要选哪种刀库关键还是看您的加工对象一般需要多少把刀。
对于刀库本身的品质,由于现在的刀库已经是专业化社会化生产。所以无论生产数控机床的厂家是多么大,其刀库都是买来的。所以不管数控机床生产厂家的规模大还是小,就刀库及换刀装置而言都是在同一起跑线上的。
到此为止,前面所讲的主要都是机械以及强电方面的内容,下面就要进入数字控制领域了。也就是说我们要从前面的形象领域走进机抽象领域。所以您的思维方式也要调整一下了。因为“电”本身就是看不见、摸不着(也不敢摸)而又神通广大的东西。可是要买数控机床的企业往往又是搞机械加工的。所以对“电子”就更感到陌生,其实这也没关系。因为您的企业必竟是应用它,而又不是研究它。而您本人只是了解它而不是操作它。所以您可以把抽象的东西,形象化的理解,充分打开您的想象力。
★主轴作为数控机床的关键组件在性能上有哪些要求?
主轴直接承受切削力,转速范围变化又较大。所以对主轴组件的主要性能提出如下要求:
1)回转精度:是指主轴在无负荷的转动条件下,主轴前端工作部位的径向和轴向跳动值,回转精度的测量一般分为静态测量、动态测量、间接测量。目前我国在生产中大都还是运用传统的静态测量。
2)运动精度:是指工作状态下的旋转精度。这个精度通常与低速回转精度有较大差别,运动状态下的旋转精度取决于主轴的工作速度、轴承性能以及主轴本身的平衡性能。
3)刚度:是指在受外力时,主轴抵抗变形的能力。刚性不足在切削力的作用下,主轴将产生较大的弹性变形。不仅影响加工质量,还会破坏轴承的正常工作条件、加快磨损。
4)抗振性:是指切削加工时,主轴保持平稳运转而又不发生振动的能力。;
5)主轴温升:主轴运转时,温升过高会引起两方面的不良结果。一是主轴及箱体受热变形直接影响加工精度;二是轴承的正常润滑条件遭到破坏,影响轴承的正常工作,甚至出现“抱轴”。
6) 耐磨性:只有具备足够的耐磨性,才能长期保持精度。因此主轴的关键部位(如主轴锥孔)要经良好的表面热处理。
综上所述您可以看出主轴组件的生产过程也一定是非常严格的,它不单是要有良好的设备,更需要的是要有严格的生产管理。后者恰是中国企业的弱项。
★数控机床上用于驱动的电动机有哪几件?如何分类?
实际上我们真正遇到的数控机床的电机也就是主轴驱动电机和进给驱动电机。概括地讲主轴电机更强调力量,进给电机更强调的效率。目前数控机床常见的主轴电机有交流伺服电机、交流变频电机。数控机床的进给电机常见的一种是档次较低的步进电机、一种是交流伺服电机。其它的像直流伺服电机、直线电机等要不就是已遂步淘汰,要不就是价格高、技术复杂,中国还没普及。淘汰的东西您不能要,没普及的东西您同样不能要(价格太高服务也跟不上)
★步进电机与交流伺服电机的特点、区别是什么?
1)步进电机一般用于开环伺服系统,由于没有位置反馈环节,固位置控制的精度由步进电机和进给丝杠等等来决定。虽档次低了点,但是结构简单价格较低。在要求不高的场合仍有广泛应用。在数控机床领域中大功率的步进电机一般用在进给运动(工作台)控制上,但是就控制性能来说其特性远不如交流伺服电机。振动、噪音也比较大。尤其是在过载情况下,步进电机会产生失步,严重影响加工精度。所以步进电机最常用的还是在对普通机床的数控化改造上。由于要改造的机床一般都是旧机床,所加工的对象一般是形状虽然较复杂,但是精度要求并不很高。所以用步进电机是再合适不过了。我公司研发的并且得到广泛应用的经济型铣床数控系统和经济型车床数控系统,就是配用的步进电机,在枪炮等兵器加工制造领域得到非常满意的评价。还有就是用在线切割机上。由于线切割加工是靠放电加工,没有切削力。所以永远不存在过载现象,再加上线切割加工时进给速度很慢(步进电机还有一个缺点就是它的转距会随着转速的增加而降低)。所以在快走丝线切割机上步进电机真正找到了自已的位置,几乎是一统天下。
2)流伺服电机,
数控机床用于进给驱动的交流伺服电机大多采用三相交流永磁同步电机,关于这种电机您有必要耐心的多了解一点。这种电机的定子装有三相对称的绕组,而转子是永久磁极。当定子的绕组中通过三相电源后,定子与转子之间必然产生一个旋转场。这个旋转磁场的转速称为同步转速。电机的转速也就是磁场的转速。由于转子有磁极,所以在极低频率下也能旋转运行。所以它比异步电机的调速范围更宽。而与直流伺服电机相比,它没有机械换向器,特别是它没有了碳刷,完全排除了换向时产生火花对机械造成的磨损,另外交流伺服电机自带一个编码器。可以随时将电机运行的情况“报告”给驱动器,驱动器又根据得到的“报告”更精确的控制电机的运行。由此可见交流伺服电机优点确实很多。可是技术含量也高了,价格也高了。最重要是对交流伺服电机的调试技术提高了。也就是电机虽好,如果调试不好一样是问题多多。所以您也不要听有些厂家的宣传——“我公司选用的电机如何好。”没用!还是了解一下他们的调试水平再说。
★您知道进给驱动与丝杠的联接结构吗?
电机与滚珠丝杠联接的最最重要的一点就是确保传动无间隙。主要有三种联接方式:直接联接式、齿轮减速式、齿形带式。目前使得最普遍的是直接联接式,就是用一个可以微量扰动的联轴器,将电机与丝杠直联。可见这个联轴器是个非常关键的东西。我公司数控机床产品上的联轴器是选用德国进口的联轴器,确保万无一失。
★在数控机床中您常听说的刀库,它的完整涵义是什么?
说到数控机床中的加工中心,必然要提到刀库,实际它是对整个自动换刀系统的总称。而刀库只是这个系统中最形象也是最重要的一个部分。这个系统应包括刀库、刀具交换机构,以及相关的控制元件。
;⑶ 什么是感受器什么是感受器官 急!!! 快!!!
感受器
:
感觉器余纯枯官
的一部分,是有力的
神经末梢
,能产生兴奋的部分,属细胞层次。
人体有多种感觉裤早器官。主要是眼、耳、鼻、舌、皮肤等竖洞。
⑷ 感受器和感觉器官有什么差别
答:三者是包含关系。但是人们往往误认为“感官”就是“感觉器官”的简称,实际上区别如下:
一,感官包括感觉器官,视觉器官,听觉器官,嗅觉器官,凳空高味觉器官等等。泛指生物体对一切外界刺激感受的装置。
二,感觉器官
感觉器官是指机体内的特殊感受器,如视觉、听觉器官。其构造包括感枣尺受器及其附属结构。感觉器官由三部分组成:①感受器 (sensory receptor),②神经传导部分,③大脑的终端部分。
三,感受器
感受器是感觉神经末梢的特殊装置,广泛分布于身体各器官和组织内。感受器能接受亏指体内外各种刺激,并将其转变为神经冲动,传达到中枢神经。感受器通常根据所在部位和所接受刺激的来源,分为外感受器、内感受器和本体感受器3大类。根据刺激性质不同可把感受器分为:机械感受器;温度感受器;伤害性感受器;电磁感受器;化学感受器。
⑸ 感受器和感觉器官有什么区别
感受器
动物体表、体腔或组织内能接受内、冲笑外环境刺激,并将之转换成神经过程的结构。:一弯拆般感受器,分布全身各部,如触、压、痛、温度、肌、腥、关节、内脏和心血管的感受器, 区别;感受器不一定是器官而 感觉器官一定是器官,区别挺大
人体有多种感觉器官。主要是眼、耳、鼻、舌、皮散闹含肤等。
相信我不会错
⑹ 数控机床是使用什么技术实现机床工作自动化
计算机控制技术,伺服驱动技术,传感检测技术。
数控机床要实现智能,需要各种传感器收集外部环境和内部状态信息,近似人类五官感知环境变化的功能,对人来讲,眼睛是五官中最重要的感觉器官,能获得90%以上的环境信息,但视觉传感器在数控机床中的应用还比较少。随着自动化和智能化水平的提高,视觉功能在数控机床中将发挥越来越重要的作用。
随着MEMS(微机电系统)技术,嵌入技术,智能材料与结构等技术的发展,传感器趋向小型化。MEMS微传感器,薄膜传感器以及光纤传感器等微型传感器的成熟应用,为传感器嵌入数控机床奠定了基础。

(6)机床的感受器官是什么扩展阅读:
注意事项:
按照数控机床对安装使用环境的技术要求,应将机床放置于相对无尘,温度恒定,湿度恒定的场所。
通电前要检查数控机床的外观、电器管线及其一些外部的辅助设备,是否有异常情况。特别是外部辅助设备,带有液压系统泵站的,要观察液压油液的量是否充足,带有气压系统的,要进行定期的空气压缩机,储气压力容器的排水,防止存积积存过多的水分,在气流的带动下进入机床内部,引起零部件的锈蚀,甚至损坏。
通电按照正常的通电顺序:机床总电源-数控系统电源-伺服系统电源-松开急停按钮,减少对数控系统电器元件的冲击,延长使用寿命。
⑺ 感受器和感觉器官有什么不同
感受器指分布于体表或组织的一些专门机体内外环境变化的结构和装置。感受器连同它们的附属结构就构成了感受器官!
比如耳蜗中的毛铅扰细渗消胞是丛激知声音的感受细胞,它就是感受器,尔耳朵就是感觉器官!
⑻ 感受器一般都是什么器官
按感受器在身体上分布的部位并结合一般功能特点可区分为:内感受器和外感受器两大类。外感受器包括:光感受器、听感受器、味感受器、嗅感觉器和分布在体表、皮肤及粘膜的其他各类感受器。内感受器包括:心血管壁的机械和化学感受器,胃肠道、输尿管、膀胱、体腔壁内的和肠系膜根部的各类感受器,还有位于关节囊、肌腱、肌梭以及内耳前庭器官中的感受器(通称本体感受器)。 按所接受刺激的特点可将感受器分为:①机械感受器 。包括位于皮肤内、肠系膜根部、口唇、外生殖器等部的触 、压感受器和位于心血管壁内、肺泡及支气管壁内,各空腔内脏壁内的牵张(或牵拉)感受器。②温度感受器。包括温热感受器及冷感受器两种,遍布于皮肤及口腔、生殖器激培灶官等部的粘膜内(见温度觉)。③声感受器。在大多数高等动物已发展为结构复杂的听觉器官,其组成部分除接受声波振荡的内耳螺旋器外,还有增强声压的中耳和集音的外耳。④光感受器。动物(甚至某些植物)的最主要的感受器,甚至原生动物,如眼虫就有了感光的眼点。它的光感受器的首要组成部分是感光细胞,绝大部分动物的光感受器还具备多层结构的视网膜(见视觉器官)。⑤化学感受器。主要分布于鼻粘膜、口腔粘膜、尿道粘膜、眼结合膜等处,主要感受空气中和水中所含的化学刺激物 ,如Na 、H 以及一些挥 发性油类。⑥平衡感受器。如鱼类身体两侧部的侧线(见侧线器官) ,中蚂鸟类及哺乳类高度发展的内耳平衡器官(见前庭器官)。⑦痛感受器。也叫损伤性刺激感受器,广泛地分布在皮肤、角膜、结合膜、口腔粘膜等处的游离神经末梢,还有分布于胸膜、腹膜及骨膜等部的神经末梢,多无特殊结构(见痛觉明扮 )。⑧渗透压感受器。位于下丘脑的视上核及室旁核内,详细结构至今还未弄清,它对体液中渗透压的变化非常敏感,当血浆渗透压降低时,它所分泌的抗利尿激素减少,反之则分泌增加,从而调节尿中排出的水分,维持体液的正常渗透压 。
⑼ 感受器简介
gǎn shòu qì
感受器是指分布于体表或组织内部的一些感受机体内外环境变化的结构和装置。其结构是多种多样的:有些感受器就是感觉神经末梢,如与痛觉有关的神经末梢,有些感受器在 *** 的神经末梢周围包绕一些细胞或数层结构,共同形成一个特殊结构,如与触压觉有关的触觉小体和环层小体等。另外还有一些在结构上和功能上都高度分化了的感觉细胞,它们以类似突触形式与神经末梢相连,如视网膜中的感觉细胞,耳蜗中的声波感受细胞等。感觉器官是指机体内的特殊感受器,其结构包括感受器及其附属器。高等动物具有的一些重要感受器主要有眼、耳、前庭器官等。
可按各种方法将众多感受器进行分类,如根据感受器的分布位置可分为内感受器和外感受器,可根据所接受的 *** 性质把感受器分为机械感受器,化学感受器和电磁感受器(包括光和热)等。外感受器是指感受外界环境变化的感受结构和装置。这些感受器受到 *** 后,一般都能引起清晰的意识感觉。内感受器多分布于血管壁,内脏、骨骼肌、肌腱、前庭器官等部位,其特点是它们感受到 *** 后所引起手银的意识感觉,一般不清晰或不引起意识感觉。
机体的各类感受器在机能上都具有以下共同特点:
1.各类感受器都具有各自的适宜 *** 。所谓适宜 *** 是指只需要极小强度的某种 *** 即能引起感受器发生兴奋,这种 *** 形式称为该感受器的适宜 *** 。引起感受器发生兴奋的最小适宜 *** 强度称之为该感受器的感觉阈值。
2.各类感受器都具有换能作用,即能把作用于它们的各种形式的 *** 能量转变为相应传入神经纤维上动作电位,传入中枢神经系统相应部位。中枢神经系统通过众多传入神经纤维获得来自各感受器的传入信号。
3.感受器把外界 *** 转换成神经动作电位,不仅仅是发生能量形式的转换,更重要的是把 *** 所包涵的环境变化的信息也转移到新的电信号系统中,这就是所谓编码作用。关于外界 *** 的质和量以及其它属性为何编码在神经特有的电信号中,是十分复杂的问题,目前尚不清楚。仅知不同感觉的引起,不仅决定于 *** 的性质和被受 *** 的感受器。也决定于传入冲动达到大脑皮层的终点部位。例如用电流 *** 病人的视神经,冲动传至枕叶皮层即产生光亮的感觉。又如临床上遇有肿瘤等病变压迫听神经时,会产生耳鸣的症状。这是由于病变 *** 引起听神经冲动传到皮层听觉中枢所致。由此可见,感觉的性质决定于传入冲动达到高级中枢的部位。至于在同一感觉类型的范围内,对 *** 强度(或量)如何编码问题,目前认为感受器可通过改变相应传入神经纤维上的动作电位频率来反应 *** 的强度。 *** 加强时,还可使一个以上的感受器和传入神经向中枢发放冲动。
4.各类感受器都具有适应现象。所谓适应现象即指在 *** 感受器的 *** 仍存在时,而感觉逐渐消失。这种现象也常体现于生活中,如“入芝兰之室,久而不闻其香”。即反应嗅觉对 *** 的适应现象。实验也证明,当 *** 仍继续作用于感受器时,而传入神经纤维上的动作电位频率有所下降,这些都证明感受器具有适应现象。
各种感受器的一个共同功能特点,是它们各有自己最敏感、最容易接受的 *** 形式;这就是说,用某种能量形式的 *** 作用于某种感受器时,只需要极小的强度(即感觉阈值)就能引起相应的感觉。这一 *** 形式或种类,就称为该感受器的适宜 *** ,如在一定波长的电磁波是视网膜光感受细胞的适宜 *** ,一定频率的机械震动是蜗毛细胞的适应 *** 等。正因为如此,机体内、外环境中所发生的各种形式的变化,总是先作用于和它们相对应的那种感受器。这一现象的存在,是因为动物在长期的进化过程中逐步形成了具有各种特殊结构和功能的感受器以及相应的附属结构的结果,便得它们有可能对内、外环境中某些有意义的变化进入灵敏的感受和精确的分析。不同动物所处的生活环境和条件毕悔宴不同,因此在进化中有可能形成一些异于人体的特殊感受装置,这在广大的动物界前此屡见不鲜,早已引起人们极大的兴趣和注意。研究这些可能是极低等动物的特殊感受装置,不仅对理解感受器活动的一般规律有帮助,而且有很大的仿生学意义。
各种感受器在功能上的另一个共同特点,是能把作用于它们的各种 *** 形式,转变成为相应的传入神经末稍或感受细胞的电反应,前者称为发生器电位(generator potential),在后者称为感受器电位(receptor potential)。如在第二章所述,发生器电位和感受器电位的出现,实际上是传入纤维的膜或感受细胞的膜进行了跨膜信号传递或转换过程的结果。和体内一般细胞一样,所有感受器细胞对外来不同 *** 信号的跨膜转换,也主要是通过两种基本方式进行的,如声波振动的感受与蜗毛顶部膜中与听毛受力有关的机械细胞对外来中与听毛受力有关的机械门控通道的开放和关闭有关,这使毛细胞出现与声波振动相一致的感受器电位(即微音器电位);视杆和视锥细胞则是由于它们的外段结构中视盘膜上存在有受体蛋白(如视紫红质),它们在吸收光子后,再通过特殊的G蛋白和作为效应器酶的磷酸二酯酶的作用,引起光感受器细胞外段胞浆中cGMP的分解,最后使外段膜出现感受器电位。在其他一些研究过的感受器,也看到了类似的两种信号转换机制。由此可见,所有感受性神经末稍和感受器细胞出现电位变化,就是通过跨膜信号转换,把不同能量形式的外界 *** 都转换成跨膜电位化的结果。
如前,发生器电位和感受器电位同终板电位和突触后电位一样,是一种过渡性慢电位,它们不具有“全或无”的特性而其幅度与外界 *** 强度成比例;它不能作远距离传播而可能在局部实现时间性总和和空间性总和。正因为如此,感受器电位和发生器电位的幅度、持续时间和波动方向,就反映了外界 *** 的某些特征,也就是说,外界 *** 信号所携带的信息,也在换能过程中转移到了这种过渡性电变化的可变动的参数之中。
发生器电位和感受器电位的产生并不意味着感受器功能作用的完成,只有当这些过渡性电变化最终触发分布在该感受器的传入神经纤维上产生“全或无”式的可作远距离传导的动作电位序列时,才标志着这一感受器或感觉器官作用的完成。
感受器在把外界 *** 转换成神经动作电位时,不仅仅是发生了能量形式的转换;更重要的是把 *** 所包涵的环境变化的信息,也转移到了新的电信号系统即动作电位的序列之中,即编码作用。编码(encoding)一词,本是工程通讯理论中的一个概念,指一种信号系统(如莫尔斯电码)如何把一定的信息内容(如电文内容)包涵在少量特定信号的排列组合之中。因此,感受器将外界 *** 转变成神经动作电位的序列时,同时也实现了编码作用;中枢就是根据这些电信号序列才获得对外在世界的认识的。问题是外界 *** 的质和量以及其他属性,是如何编码在特有的电信号序列中的?这一问题十分复杂,目前还远远没有弄清楚,下面先从最简单的方面加以叙述。
首先考虑外界 *** 的“质”,如听觉或视觉等 *** 在性质上的不同是如何编码的。如所周知,不论来自何种感受器的传入神经纤维上的传入冲动,都是一些在波形和产生原理上基本相同的动作电位;例如,由视神经、听神经或皮肤感觉神经的单一纤维上记录到的动作电位,并无本质上的差别。因此,不同性质的外界 *** 不可能是通过某些特异的动作电位波形或强度特性来编码的。实验和临床经验都表明,不同种类的感觉的引起,不但决定于 *** 的性质和被 *** 的感受器,也决定于传入冲动所到达的大脑皮层的终端部位。例如,用电 *** 作用于病人视神经,使它人为地产生传向枕叶皮层的传入冲动,或者直接 *** 枕叶皮层使之产生兴奋,这时都会引起光亮的感觉,而且主观上感到这些感觉是发生在视野的某一部位;同样,临床上遇到肿瘤或炎症等病变 *** 听神经时,会产生耳鸣的症状,这是由于病变 *** 引起的神经冲动传到了皮层听觉中枢所致;而某些痛觉传导路或相应中枢的 *** 性病变,也会引起身体一定部位的疼痛。这些都说明,感觉的性质决定于传入冲动所到达的高级中枢的部位,而不是由于动作电位的波形或序列特性有什么不同;也就是说,不同性质的感觉的引起,首先是由传输某些电信号所使用的通路来决定的,即由某一专用路线(labeled line)传到特定终端部位的电信号,通常就引起某种性质的主观感觉。事实上,即使是同一性质的 *** 范围内,它们的一些次级属性(如视觉 *** 中不同波长的光线和听觉 *** 中不同频率的振动等)也都有特殊分化了的感受器和专用传入途径。在自然状态下,由于感受器细胞在进化过程中的高度分化,使得某一感受细胞变得对某种性质的 *** 或其属性十分敏感,而由此产生的传入信号又只能循特定的途径到达特定的皮层结构,引起特定性质的感觉。因此,一般无需怀疑,某种主观感觉是否是由一些非适宜 *** 引起的“非真实”的感觉,只是在病理情况下有例外。
在同一感受系统或感觉类型的范围内,外界 *** 的量或强度是怎样编码的呢?既然动作电位是“全或无”式的,因而 *** 的强度不可能通过动作电位的幅度大小或波形改变来编码。根据在多数感受器实验中得到的实验资料, *** 的强度是通过单一神经纤维上冲动的频率高低和参加这一信息传输的神经张纤维的数目的多少来编码的。图91表示在人手皮肤的触压感受器所进行的实验,说明在感受器的触压重量和相应的传入纤维的动作电位发放频率之间,存在着某种对应关系。重量过轻时,神经纤维全无反应,到达感受阈值时开始有冲动产生;以后随着触压重量的增大,传入纤维上的冲动频率也越来越高。不仅如此,在触压 *** 继续加大的情况下,同一 *** 有可能引起较大面积的皮肤变形,使一个以上的感受器和传入纤维向中枢发放冲动。这样, *** 的强度既可通过每一条传入纤维上冲动频率的高低来反映,还可通过参与电信号传输的神经纤维的数目的多少来反映。当然,任何一个天然 *** 在空间和时间上的属性都是极其复杂的(例如一个彩 *** 画面所包涵的信息内容),因此,感受器的编码过程也是极其复杂的。还应该知道的是,感觉过程的编码过程并不只是感受器部位进行一次,事实上信息每通过一次神经元间的突触传递,都要进行一次重新编码,这使它有可能接受来自其他信息源的影响,使信息得到不断的处理,这当然属于中枢神经元网络的功能。
至于 *** 的物理强度如何转变成为传入神经纤维上频率不同的冲动,目前认为是由于强的 *** 能引起幅度较大而持续时间较长的发生器电位,而后者引起神经末稍较高频率的冲动。
当 *** 作用于感觉器时,经常看到的情况是虽然 *** 仍在继续作用,但传入神经纤维的冲动频率已开始下降,这一现象称为感受器的适应(adaptation)。适应是所有感受器的一个功能特点,但它出现的快慢在不同感受器有很大的差别,通常可把它们区分为快适应和慢适应感受器两类。快适应感受器以皮肤触觉感受器为代表,当他们受 *** 时只顾 *** 开始后的短时间内有传入冲动发放,以后 *** 仍然在作用,但传入冲动频率可以逐渐降低到零;慢适应感受器以肌梭、颈动脉窦压力感受器为代表,它们在 *** 持续作用时,一般只是在 *** 开始以后不久出现一次冲动频率的某些下降,但以手可以较长时间维持在这一水平,直至 *** 撤除为止。感受器适应的快慢各有其生理意义,如触觉的作用一般在于探索新异的物体或障碍物,它的快适应有利于感受器及中枢再接受新事物的 *** ;慢适应感受器则有利于机体对某些功能状态如姿势、血压等进行长期持续的监测,有利于对它们可能出现的波动进行随时的调整。适应并非疲劳,因为对某一 *** 产生适应之后,如增加此 *** 的强度,又可以引起传入冲动的增加。