㈠ 超声波的作用及原理
超声波频率高、波长短,他可以像光那样沿直线传播,使得我们有可能向某已确定方向上发射超声波,声波是纵波,可以顺利地在人体组织里传播。 超声波遇到不同的介质交接面时会产生反射波.
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
在全球,超声波广泛运用于诊断学、治疗学、工程学、生物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范畴。
(一)工程学方面的应用:水下定位与通讯、地下资源勘查等
(二)生物学方面的应用:剪切大分子、生物工程及处理种子等
(三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超等
(四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等
超声波的作用
玻璃零件.玻璃和陶瓷制品的除垢是件麻烦事,如果把这些物品放入清洗液中,再通入超声波,清洗液的剧烈振动冲击物品上的污垢,能够很快清洗干净.
虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“声呐”判断飞行前方是昆虫,或是障碍物的。而雷达的质量有几十,几百,几千千克,,而在一些重要性能上的精确度.抗干扰能力等,蝙蝠远优与现代无线电定位器.深入研究动物身上各种器官的功能和构造,将获得的知识用来改进现有的设备,这是近几十年来发展起来的一门新学科,叫做仿生学.
我们人类直到第一次世界大战才学会利用超声波,这就是利用“声呐”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。
声呐与雷达的区别
声呐通过超声波
雷达通过无线电波
医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。
研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、
以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。
超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生
一系列力学的、热学的、电磁学的和化学的超声效应,包括以下4种效应:
①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。
超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
超声波是声波大家族中的一员。
声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。
超声波是指振动频率大于20KHz以上的,人在自然环境下无法听到和感受到的声波。
超声波治疗的概念:
超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的
㈡ 超声波的特点
穿透力强,可以用超声波测距离,就是我们所说的声纳,还有超声波的破碎力强,可以用来碎石,就是结石.
下面在详细介绍下:
超声波的基本特性
频率在2kHz以上的声波称之为超声波,由于频率f升高,波长λ变短使得超声波比普通声波具有特殊性,即近似于光的某些特征。如束射性,由一种媒质进人另一种媒质发生折射、反射等。同时有很强的被吸收性与衰减性,带有很强的能量。本节简要介绍超声波的几个主要特征。
【超声波的束射性】
人耳可感受的声音是无指向性的球面波,即以声源为中心呈球面向四周扩散周围均能听到声音。由于超声波频率很高,所以方向性就相对要强,方向性即柬射性。当超声波发生体压电晶体的直径尺寸远大于超声波波长时,则晶体所产生的超声波就类似于光的特性,如图1一1一1所示。
紧靠晶体辐射板的一段叫近场区,接近于圆柱状;离晶本辐射较远的部分,超声波以一定的角度扩散,叫远场区。若压晶体圆片的直径为D,超声波在该介中的波长为λ,则近区的长度为:
D2-λ2 D2
N= ———— ≈ —— (D》λ)
4λ 4λ
由上式看出,压电晶体片直径愈大或频率越高,即波长λ愈短,则近场区的长度愈长,此超声波场的束射性就愈好。
声学工作者用光衍射法,对医用超声波换能器的声场显示做了深入、生动的研究。
就是这个研究成果的一组照片,它对我们深入而又形象地理解超声波的束射性,超声波的聚焦性,都有很大的帮助。图1-2是这种是这种光衍射法的实验光路图。图中的He——Ne激光器的波长为6328A(埃),O为一组组合透镜,它将光束镜发出的扩散光束变为平行光束。最后在相屏上得到的是一个超声波声束的倒立的实相。图1-3图1-6的一组照片,就是从这个相屏上拍摄而成的。整个实验均在暗室中进行。图1-5所示的这张未聚焦的单片换能器的全景超声波束照片,是我们超声波治疗机所发出的超声波声束的生动、形象的显示,是值得我们深入研究和理解的。
理解了超声波的束射性,对超声波治疗有重要的意义。由于超声波具有很强的束射性,在超声波治疗时,要注意使用声头辐面垂直,对准治疗部位。以由于超声波声头辐射出的超声波场中心处最强,愈向外侧愈弱,所以,在超声波治疗操作时,一般都要以一定的速度,在治疗部位做小圆周或其它形式的移动,以使治疗部位得到的超声波剂量基本均匀,从而保证治疗效果的良好。
【超声波的透射、反射、折射与聚集】
由于超声波的频率较高,所以超声波在定向传播时,在两种不同媒质的分界面上,会出现类似于光线一样的透射、反射和折射现象。
光线的透射、反射与折射现象是常见的。例如,我们在一个黑暗的环境里将一束光线投身到一个盛满水的透明玻璃烧杯里,我们将十分清楚地看到光线在水面上产生的透射、反射与折射现象。我们采用图1一2所示的光衍射法,也可以清楚地看到超声波声束的反射、透射与折射现象。见图1一7。
光的聚集现象是常见的。如果我们手边在一个放大镜,在强烈的阳光下,太阳光经过放大镜的聚集到一点,就会将这一点上的纸或者香烟等物点燃。许多人都亲身做过这个实验。
超声波的聚集现象和光线的聚集现象是一样的。利用超声波聚集装置可以将超声波束会聚到一点,从而将超声波的声强提高几倍甚至几千倍,利用这样巨大的声强可以做许多很有意义的工作。例如:超声波切割、超声波钻孔、超声波打磨等。
【超声波的吸收与衰减】
声波在各种媒质中传播时,由于媒质要吸收掉它的一部分能量,所以,随着传播路程的增加,声波的强度会逐渐减弱。
在一个广场上,一个民族弦乐正在为广大群众作街头演出,许多人闻讯前去观看和欣赏那动听的音乐。当你从远处走近这个乐队时,首先听到的是那音调低沉的鼓声,随着你慢慢走近乐队,你就逐渐听到了锁呐声、笛声、二胡声等;当你最后走到乐队周围时,你才听到了那音调很高的清脆的铃声。
这个例子,很生动地说明了各种不同频率的声波,在空气中传播时被吸收的程度是不同的。频率越高的声波,空气对它的吸收越强,所以它传播的距离较短。例如上述乐队中音调很高的铃声;因其频率很高,空气对它的吸收作用很强,所以传不远。反之,对频率越低的声波,空气对它的吸收较少,因此,它传播的距离较长。上述乐队中音调低沉的大鼓声音传得很远,正是由于它的频率很低的缘故。
声波在媒质中传播时,被吸收而衰减的另一个特点是对于同一个声波,当它在围体、液体或气体,以及各种不同物质中传播时,它被吸收的程度也是不同的。对于一个频率固定的声波,在气体中传播时,它被吸收的最厉害;在液体中传播时,它吸收的较少;而在固体中传播时,则被吸收的最少。所以,声波在空气中传播的最短,在水中则可传播的远一些,而在金属中则能传播得很远。
以上关于声波吸收的两个特性,无论对可听声,或是对超声波,都是适用的。对于超声波来讲,由于它的频率很高,所发,它在空气中传播时,被吸特别厉害。据科学家们的实验,频率为100亿Hz的超声波,在它离开声源的一刹那间,马上会被空气全部吸收掉。在超声波治疗的临床应用中,对于超声波的吸收特性,必须予以足够的重视。这一点,在下面的有关章节中,将要详细谈到。
【超声波的巨大能量】
超声波之所以在工业、国防和医疗等方面发挥着独特而又巨大的作用,还有一个原因是由于超声波比一般可听声有着强大的功率。根据声学工作者的实验测定,一般的讲话声音的能量是很小的。假设我们想用普通说话的能量来烧开一壶水,那么,必须动员700多万人,连续大声喊叫12个小时才行。超声波具有的能量,要比一般可听声大的多。根据有关声学实验测定,频率为100万赫兹的超声波的能量,要比同幅度的频率为1000赫兹的可听声能量大100万倍。所以说,拥有巨大的能量,是超声波的一个重要特点。超声波的许多应用,也都是利用它的这一特点进行工作的。为什么超声波拥有这么强大的功率呢?这是由于声波到达某一物质中时,由于声波的振动作用,使物质中的分子随便之一起振动,两者振动的频率是一致的。物质分子振动的频率,决定了该物质分子振动的速度,频率越高,速度越大。我们知道,一个运动物体所具有的动能E与其质量M和运动速度有下列关系:
E=Mv2
即,运动物体的动能与其质量成正比,与其速度的平方也成正比。
由于超声波的频率很高,它使所进入的物质分子运动速度,也随之变的很高。根据上式可知,这样高的运动速度,使该物质分子具有很大的动能,这就是超声波拥有巨大能量的缘故。
【超声波的声压特性】
所谓“声压”指的是由于声波的振动而使声场中的物体受到附加压力的强度,单位为公斤/平方厘米,一般可听声的声压非常微小,其数值约为0.000001公斤/平方厘米~0.000002公斤/平方厘米。这公微小的声压,一般是不引起人们的注意的。但是,超声波的声压,一般是很大的。例如,在水中通过一般强度的超声波时,因超声波而产生的附加压力,可以达到好几个大气压。超声波之所以能够产生这样强的声压,可以达到好几个大气压,其根本原
因仍然是由于超声波的频率很高,所以振动时,使高密度分子间的伸拉很快以致使其间形成瞬时的真空与压缩高密度区,产生巨大的压力差。当它的振幅达到一定程度时,超声波拥有的能量十分巨大。
当超声波束通过液体时,由于巨大的超声波声压作用,可以在液体中出现"空化现象"。这种现象所产生的瞬时压力,可以高达几千个,甚至上万个大气压!这么巨大的瞬时压力,使超声波的应用,在许多方面显示出它独特的巨大作用。现在已被普遍应用的超声波清洗,超声波乳化等,都是超声波空化现象的具体运用。
超声波的空化现象是怎样产生的呢?让我们通过观察一个声学实验,来了解空化现象产生的奥妙。
如图1一8所示,在一个盛满水的玻璃容器中,放大一个超声波发生器的声头。
在超声波机末工作之前,该容器中的液体分子受到的只是大气压的压力,液体的分子都很稳定,没有什么变化。当超声波机开始工作后,一般强大的超声波束穿过了整个液体内部。我们知道,当声波通往某种物质时,由于声振动现象,这种压缩和稀疏相互交替的作用,使该物质分子受到的压力产生了变化。例如当超声波振动使水分子压缩时,水分子所受到压力将是大气压加上水分子被压缩时受到的压力,这个变化的压力就是前面我们所谈到的"声压"。当这个巨大的声压使水分子团压缩时,好象水分子团受到了来自四面八方的巨大压力(参看图1一8A)当超声波振动使水分子稀疏时,水分子又受到了向四面八方散开的拉力(参看图1一8B)。对于一般的液体,它能经受得住声压的巨大压力作用,所以在受到压缩力时,水分子团不会发生反常的现象。但是当水分子团受到稀疏作用而受到四面八方的拉力时,它们就支持不住了。在拉力集中的地分,水分子团就会断裂开来,这种断裂作用,最容易发生在存有杂质和气泡的地方,因为这些地方水的强度特别低,根本经不住几倍于大气压力的巨大的拉力作用而发生断裂。这种断裂的结果,使水中会产生许多气泡状的小空腔,这种空腔存在的时间很短,一瞬间,就会闭合起来。小空腔闭合的时侯,会产生巨大的瞬时压力,一般的可高达几千个,甚至上万个大气压。这种巨大的瞬时压力,可以使悬浮在水中的固体表面受到急剧的破坏,超声波的绝妙的清洗作用、乳化作用以及超声波治疗中利用超声波来击碎 脑血栓和胆结石块等,都是运用了超声波的这种巨大的瞬时压力。这种由于超声波在液体中的声压,而使液体分子团破裂而产生无数气体小空腔,由于这些小空腔闭合而产生的瞬时压力的现象,称之为超声波的空化现象。超声波的空化现象,也是超声波的重要特性之一。
㈢ 超声波技术在生活中有什么应用
1、超声诊断
绝大多数人还未出生就已经跟它“打过交道”了——为了了解我们的健康状况,妈妈在我们还是几个月胎儿的时候就带我们去照过B超了。B超是超声技术在临床医学中最广泛、影响最大的一种应用。
2、超声测距
如果说B超是最具人气的超声应用,那最接“地气”的超声技术应用当属超声测距了。这其中最常见便是倒车辅助系统(俗称“倒车雷达”)。系统向外发出超声波,利用超声波反射回来时间差测算距离,通过语音提示提醒驾驶员周边障碍物情况,引导安全倒车。
因计算方便迅速,且测量精度能满足工业实用要求,所以,随着制造升级和人工智能的发展,近几年,超声测距在移动机器人上得到广泛应用。
3、超声水下通信
目前超声水下通信应用最广泛、最重要的一种装置是声纳。最高大上的便是各国海军用它对潜艇等水下物体进行探测、定位和追踪,另外还广泛应用于,声呐技术还广泛用于鱼雷制导、鱼群探测、海洋石油勘探等。
3、超声加工
超声技术在工业领域的应用主要是超声加工。超声加工是利用超声波高频振动,对材料进行微冲击,使材料加工表面逐步破碎的特种加工。
4、超声焊接
超声焊接是利用高频振动波传递到两个需焊接物体的表面,在加压情况下表面相互摩擦而形成分子层之间的熔合。主要应用于塑料和金属领域,在汽车、制冷、太阳能、电池、电子等行业有广泛应用。如锂电池的极耳焊接、冰箱空调行业的铜管封尾等。
5、超声清洗
效果好、速度快、无需人手接触清洗液、对物件表面无损伤,超声波清洗的这些优势从何而来呢——超声波清洗基于空化作用,即在清洗液中无数气泡快速形成并迅速内爆,由此产生的冲击将浸没在清洗液中的物件内外表面的污物剥落下来,从而达到精密洗净目的。
6、超声探伤
航空航天、铁路交通、水利工程等重大设备设施,容不得一星半点缺陷,那在日常的安全检查中,如何能快速便捷、精准无损地对工件内部进行多种缺陷检测、定位、评估和诊断呢?超声探伤就是那双“火眼金睛”。
7、超声波指纹识别
湿手不能解锁手机,那么有没有不怕水的指纹解锁呢?——答案就是超声波指纹识别。小米5S、华为荣耀10就使用了超声波指纹识别解锁。从时间上来看,超声波指纹识别应该算超声技术最新潮的应用了。
(3)超声波治疗膝盖效果怎么样扩展阅读
超声波的特点
1)超声波在传播时,波长短,方向性强,能量易于集中。
2)超声波能在各种不同媒质中传播,且可传播足够远的距离。
3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。
4)超声波可在气体、液体、固体、固熔体等介质中有效传播。
5)超声波可传递能量。
6)超声波会产生反射、干涉、叠加和共振现象。
㈣ 打篮球膝盖软骨磨损的常见方法有哪些
在跳跃的过程中,脚本身就有内翻倾向。如果着陆时重心不稳定,会扭伤脚部韧带,造成膝盖软骨磨损等疾病。下面的小系列将向您介绍篮球运动中膝关节软骨磨损的急救相关信息,希望对您有所帮助。
1、止痛药、膏贴。
通过药物的化学作用,它可以抑制关节发炎,暂时缓解疼痛。该方法镇痛快,适用于发作期和急性期。然而,关节的内部结构无法得到解决,疾病反复发作。此外,大多数患者在长期使用后会发现药效逐渐减弱,在疾病的后期疗效更大,尤其是激素类药物的副作用更加剧烈,导致胃肠道、肝脏、肾脏、心血管等各种并发症。
5、玻璃酸钠注射液。
即在关节内注入润滑油,增加关节的润滑性和柔韧性,从而减轻疼痛,但不能改善关节软骨的内部结构。消毒后,还需要注射。反复使用,很容易产生依赖性,也可能会减少身体自身关节的分泌。液体容量,效果逐渐减弱。
㈤ 什么是超声波
超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大约等于人的听觉上限而得名。
㈥ 膝关节半月板损伤如何治疗;求解
半月板为位于股骨髁与胫骨平台之间的纤维软骨,附着于胫骨内外髁的边缘,因周边厚而中央部较薄,能加深胫骨髁的凹度,以适应股骨髁的凸度使膝关节稳定。半月板具有传导载荷、维挣关节稳定、协调润滑关节的作用。内侧半月板较大,弯如新月形;外侧半月板稍小,似“O”形,其活动度比内侧大。半月板常有先天性盘状畸形,称先天性盘状半月板。半月板损伤属于中医学“膝部筋伤”的范畴。 一、诊 断 (一)诊断依据 1.症状 (1)外伤史大多数患者有明确外伤史,往住是膝关节突然旋转(内或外)扭伤或跳起落地 时扭伤,伤后立即出现疼痛,且渐肿胀.部分患者此后多次扭伤发作肿痛,并引起其他症状。需注意了解患者的职业等其他因素。长期蹲位工作者,往往无明确急性外伤史。韧带损伤,关节不稳定,特别是前内侧旋转不稳定也可继发引起内侧半月板撕裂。 (2)疼痛 患者往往诉关节一侧(内或外)痛,或后方痛,位置较固定,有些患者在膝关节 伸屈活动到某一位置上出现疼痛,如接近伸直位时,多不能全伸。当疼痛伴有伸直障碍和弹响时,即弹响过后疼痛消失同时可完成伸直动作,半月板损伤的可能性极大。 (3)打软腿感到肌肉无力控制关节,常有突然要跪倒的趋势,特别是上下台阶,或行走于平坦的道路上时。其原因为膝关节不稳定及股四头肌力弱。 (4)关节交锁少数患者于活动中突然发生伸直障碍,但常可屈曲。经自己或他人协助将患肢旋转摇摆后,突然弹响或弹跳,然后恢复。此现象为破裂的半月板嵌夹于关节内不能解脱所造成。 2.体征 (1)股四头肌萎缩常可见到,以股内侧头最明显。 (2)压痛在关节间隙压痛,压痛点固定而局限,如多次检查位置不变,局限于间隙某一范围内,则有诊断意义。应特别注意区别股骨髁部的压痛。紧贴髌韧带两侧深部的压痛则以脂肪垫炎的可能性大。 (3)过伸或过屈痛作过伸或过屈试验检查是否引起疼痛。作过伸试验时,一手托足跟。一手置胫骨上端前方下压,不应放在髌骨上,以免误与髌骨压痛相混淆。过屈试验还可将足控制在外或内旋位检查。 (4)旋转挤压试验(简称RS试验) 即研磨试验阳性。 (5)负重下RS试验卧位行RS试验有可疑而不肯定时,可令患者站立,双膝屈约45度角同时向同侧扭转,检查者仍按卧位RS试验时的方式,以手指触感,同时聆听响声,并了解患者当时的疼痛感。 3.辅助检查 (1)x线投影 膝关节正侧位x线片不仅对鉴别诊断有参考价值,如骨软骨损伤,关节游离 体、骨肿瘤等需除外,而且对决定是否手术也有意义,如骨性关节炎较严重的膝关节一般不宜手术。必要时尚需按照髌骨切位像以除外髌股关节紊乱。 (2)关节造影关节造影也是一种常用的诊断方法,但无需作为常规。 (3)MRI对半月板损伤的准确率较高。 4.关节镜检查 关节镜的发明及推广,无论对膝关节疾患的诊断以及手术治疗,都带来了很大的好处,但决不应以其来完全代替其他检查。对半月极损伤,只有在临床上高度怀疑而经体检、X线造影等均无法肯定或排除,或体检与x线造影有矛盾,或不能肯定何侧半月板有损伤以及半月板切除后长期原因不明疼痛或遗留其他症状时,需要关节镜检。 (二)中医证候分类 按筋伤早、中、后期三期进行辨证分型。 (三)半月板损伤分类 半月板损伤有许多不同的分类方法,如Johnson、Smillie分类;Rosenberg-Kolowich分类方法较新,其具体分六型:1)桶柄型,2)瓣型,3)水平裂型,4)放射型,5)退变型,6)双放射撕裂型等。以上半月板损伤的分类均是按损伤后的形态学特征分类。 (四)鉴别诊断 1.骨软骨损伤 有关节积血,应警惕骨软骨损伤。如抽吸的关节液中有大量油滴则疑有软骨骨折。较大块的软骨骨折,X线片及CT可显示;小的骨块MRI可提示,骨擦伤MRI可见水肿带。 2.关节游离体 有反复交锁症状,但疼痛部位经常变换,较大的游离体X线片可显示。 3.骨性关节炎 中老年发病,X线片可见膝关节退行性变。 (五)常见并发症 包括早期手术后的感染、深静脉栓塞、神经及血管并发症、半月板修复后重新撕裂、晚期骨性关节炎。 二、治疗 (一)一般治疗 急性损伤很少考虑手术治疗。如发生关节交锁,可利用内外翻加旋转予以解锁,但切忌暴力,尤其是强迫伸直,容易造成韧带损伤。在试行解锁无效的情况下,应行小重量皮牵引,有时在肌肉痉挛缓解,疼痛减轻的情况下,患者自己稍加活动患膝,交锁即有可能解除。只有在牵引后再试行手法解锁仍无效时,才应手术探查。 (二)中医治疗 1.分证论治 筋伤早期应活血化瘀、消肿止痛,方药以云南白药、七厘散等;筋伤中期宜舒筋活络、续筋,方药以舒筋活血汤、补筋丸加减;筋伤后期以强筋壮骨,祛风活络为治则,方药以补肾壮筋汤等加减。 2.理筋手法 急性损伤者,可作一次被动的伸屈活动。嘱患者仰卧,放松患肢,术者左拇指按摩痛点,右手握踝部,徐徐屈曲膝关节并内外旋转小腿,然后伸直患膝,可使局部疼痛减轻。 进入慢性期,每日或隔日作1次局部推拿,先用拇指按压关节边缘的痛点,继在痛点周围作推揉拿捏,可促进局部气血流通,使疼痛减轻。 3.固定方法 急性损伤者使用弹力绷带加压包扎膝关节,长托板固定膝关节于伸直位3—4周;慢性陈旧损伤者可使用膝支具保护膝关节。 4.中成药 (1)口服中成药损伤早期可口服云南白药、七厘胶囊、血竭胶囊等。 (2)静脉制剂中成药损伤早期可静脉注射丹参针等。 5.其他疗法 包括直流电离子导人、频谱照射、超声波疗、音频电疗、磁疗、蜡疗等方法。 (三)西医治疗治疗原则 半月板损伤的治疗原则可根据如下:早期诊断、早期处理,应根据实际情况尽量保全或保留半月板组织或结构,修复半月板。 (四)手术治疗 1.手术指征 现在,中青年人一旦被确诊为半月板损伤,都有膝关节镜手术指征。 半月板只有外缘约10%~30%有血液供应,因此除了近边缘部的撕裂外,其他部位很难愈合。半月板很难在一次急性损伤中造成严重的断裂,它可以是横裂、纵裂、桶柄裂、水平裂等,而较复杂的混合型、多发裂以及较大面积的磨损则几乎毫无例外地都是在反复损伤后积累而成的。因此,及早诊断、及早治疗可使半月板全切除的机会减少到较低限度。而且早期治疗的效果要比晚期者满意得多。近年来由于对半月板功能的重要性有了较深入的了解,治疗原则有了很大的转变,对全切除采取了极其慎重的态度,而对早期手术却转为积极。 2.术式选择 (1)半月板修复红一红区及红一白区撕裂在妥善的修复后均可愈合。修复的方式有四种:1)开放式,2)关节镜下全封闭式,3)关节镜下自外而内式,4)关节镜下自内而外式。在修复前应先将撕裂的两缘扩创,以利愈合。 凡是在关节镜下进行的修复术,均需一定的镜下缝合器械。自外而内者在相应的部位作切口,将穿刺针(可用腰穿针)自关节囊外刺人,经过半月板裂口,行结式缝合,拉紧固定,每针间隔3~4mm,邻近的两根缝线在囊外连接结扎。也可用水平褥式缝合。自内而外者,其皮切口在相应的后内或后外侧,自内而外穿出的缝线均备好后,再全部拉紧,分别结扎与关节囊外,应注意勿将隐神经血管扎入。行半月板缝合术的病人,可固定膝关节于伸直微屈膝10度位6周,6个月内不允许跑、蹲或其他强应力活动。 2.半月板切除鉴于半月板功能的重要性,尽量不将半月板完全切除。在无条件行半月板修复的情况下,可以只做半月板部分切除,例如纵行的桶柄部分,放射形的鸟嘴部分,水平形的股或胫骨面部分,横形横裂局部。前面已阐明,只有早期诊断、早期处理才有可能争取部分切除。如果损伤的半月板既不能愈合,又因其破碎严重而造成膝关节明显的功能紊乱,则应考虑全切除。 关节镜技术即手术器械的不断提高,不仅为半月板部分切除提供了更多的可能性和可靠性,而且也使那些不得不行半月板全切除的手术创伤大大减少,复原远较关节切开者迅速。术后往往只需数日即可下地负重,2—3周即可完全复原。 (3)其他手术方式 膝关节开放半月板手术也应尽早不将半月板完全切除,开放手术正趋于淘汰。 (五)围手术期的处理 1.手术前 急性损伤期关节内如有积血,应先抽出,然后用棉垫及弹性绷带加压包扎,夹板或石膏托置患肢屈膝10。位,以限制膝部活动,并禁止下床负重。术前半小时使用抗生素预防感染。 2.手术后 手术使用抗生素预防感染3—5日。 手术3~5日后,在固定期间应积极进行股四头肌静力等长锻练,解除固定后行膝关节屈伸活动锻练,后期行膝等张、等长锻练。使用膝支具可提早下地行走。3周后解除固定,除加强股四头肌锻炼外,还可练习膝关节的伸屈活动和步行锻炼。可使用活血化瘀中药外用熏洗。 膝关节侧腹韧带损伤本病一般都有明显外伤史 受伤时可听到有韧带断裂的响声 很快便因剧烈疼痛而不能继续运动或工作 膝部伤侧局部剧痛 肿胀 有时有瘀斑 膝关节不能完全伸直 韧带损伤处压痛明显 内侧副韧带损伤时 压痛点常在股骨内上髁或胫骨内髁的下缘处;外侧韧带损伤时 压痛点在股骨外上髁或腓骨小头处 以上两种情况你可参考。 参考资料:执业医师网
补充:
半月板损伤很常见,可以在脚上绑5斤沙袋,锻炼抬腿,过一阵增加一点重量
满意答案
王 帆
8级
2010-03-05
那个只能静养 我就知道这个很不好治 也没什么好办法 你尽量少活动
㈦ 声波对人体有害最大距离
发声体产生的振动在空气或其他物质中的传播叫做声波。声波借助各种介质向四面八方传播。声波是一种纵波,是弹性介质中传播着的压力振动。但在固体中传播时,也可以同时有纵波及横波。
人的耳朵所能接受的声音域从16到20000赫兹。当声音的频率达到25到8200赫兹的时候,能感觉到振动。低于16赫兹的声音称为低音,高于20000赫兹的为超声波。20多年前,科学家开始认真研究声音对人体的影响,结果发现了超声波对内脏器官的有害作用。
弹电吉他手关节和手指受到损害
原来,长期受20000赫兹以上的声音的影响,会引起人体组织轻微发热。当频率高到超声波或更高时,发热越来越厉害。结果,体内水分子被烧,周围的组织遭破坏。超声波如果不受控制更加危险,会引起溢血、炎症和关节炎。
高频乐器,如电吉他,在演奏时发出大量的超声波。这样,乐手的手关节和手指受到损害。因为有衣服,身体受到的损害较小。有时把电吉他放在弯曲的膝盖上,也会影响到膝盖。
大功率的高强度的超声波持续作用于人体组织是有害的。小功率超声波在间歇式的作用于人体组织是非常有益的。超声波是一种振动机械波。讲个通俗的例子,当有人给你轻轻捶背你感觉舒服,但重击你时你感到疼痛甚至伤害。
以下源于网络供参考
超声波对人没有害,有益处。
其实声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1)超声波可在气体、液体、固体、固熔体等介质中有效传播。
2)超声波可传递很强的能量。
3)超声波会产生反射、干涉、叠加和共振现象。
4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
超声波是声波大家族中的一员。
声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。
超声波是指振动频率大于20KHz以上的,人在自然环境下无法听到和感受到的声波。
超声波治疗的概念:
超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的。
在全球,超声波广泛运用于诊断学、治疗学、工程学、生物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范畴。
(一)工程学方面的应用:水下定位与通讯、地下资源勘查等
(二)生物学方面的应用:剪切大分子、生物工程及处理种子等
(三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超等
(四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等
超声波的特点:
1、超声波在传播时,方向性强,能量易于集中。
2、超声波能在各种不同媒质中传播,且可传播足够远的距离。
3、超声与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应。(治疗)
超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。
超声波的发展史:
一、国际方面:
自19世纪末到20世纪初,在物理学上发现了压电效应与反压电效应之后,人们解决了利用电子学技术产生超声波的办法,从此迅速揭开了发展与推广超声技术的历史篇章。
1922年,德国出现了首例超声波治疗的发明专利。
1939年发表了有关超声波治疗取得临床效果的文献报道。
40年代末期超声治疗在欧美兴起,直到1949年召开的第一次国际医学超声波学术会议上,才有了超声治疗方面的论文交流,为超声治疗学的发展奠定了基础。1956年第二届国际超声医学学术会议上已有许多论文发表,超声治疗进入了实用成熟阶段。
二、国内方面:
国内在超声治疗领域起步稍晚,于20世纪50年代初才只有少数医院开展超声治疗工作,从1950年首先在北京开始用800KHz频率的超声治疗机治疗多种疾病,至50年代开始逐步推广,并有了国产仪器。公开的文献报道始见于1957年。到了70年代有了各型国产超声治疗仪,超声疗法普及到全国各大型医院。
40多年来,全国各大医院已积累了相当数量的资料和比较丰富的临床经验。特别是20世纪80年代初出现的超声体外机械波碎石术和超声外科,是结石症治疗史上的重大突破。如今已在国际范围内推广应用。高强度聚焦超声无创外科,已使超声治疗在当代医疗技术中占据重要位置。而在21世纪(HIFU)超声聚焦外科已被誉为是21世纪治疗肿瘤的最新技术。
超声波治病机理:
1.机械效应:超声在介质中前进时所产生的效应。(超声在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。使细胞内部结构发生变化,导致细胞的功能变化,使坚硬的结缔组织延伸,松软。
超声波的机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能,因此具有超声波独特的治疗意义。
2.温热效应:人体组织对超声能量有比较大的吸收本领,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。
产热过程既是机械能在介质中转变成热能的能量转换过程。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。
3.理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。实践证明一些理化效应往往是上述效应的继发效应。TS-C型治疗机通过理化效应继发出下列五大作用:
A.弥散作用:超声波可以提高生物膜的通透性,超声波作用后,细胞膜对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,加速代谢,改善组织营养。
B.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。
C.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。
D.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。
E.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。胶原合成及成熟。促进或抑制损伤的修复和愈合过程。从而达到对受损细胞组织进行清理、激活、修复的过程。
㈧ 跑步膝盖疼痛怎么治
问题一:跑步跑的膝盖疼怎么办 腿部紧绷,是因为你跑步的效果在出来了,你练就的小腿和大腿肌肉在长出来了,是不是有点酸胀的感觉?
膝盖痛,个人分析2个原因,第一你跑步 的地方大概比较硬,脚下去的时候影响到了膝盖,等于小腿腓骨起了个间接的因素,把脚掌和地面敲击的力传到了膝盖上面,(有点隔山打牛的感觉,哈哈)
第二,就是你跑步的姿势,慢跑和短距离跑步,千万不能全脚掌着地,而且就是着地了也要轻轻的,千万不能用力的,着地,这样会对膝盖和脚跟产生相对力的影响,从而会膝盖痛,你跑步时尽量用前脚掌撑地,有点跳的感觉,但真跑的时候不能跳哦,会影响到你的成绩的~!
现在痛,你可以放松的时候轻轻的揉揉膝盖,千万不能重揉哦,膝盖很脆弱的,一不小心会受伤的~!! 这段时间,你要采取回复,别训练了,就是锻炼最好在操场上,会减少受伤的发生率~!!
问题二:跑步后膝盖疼,怎么缓解治疗? 运动损伤,可以用治疗骨伤软组织损伤的接骨散外敷治疗,它局部给药,使药能快速渗透到损伤的部位,快速止痛消肿,使损伤组织快速恢复正常。
问题三:跑步跑的膝盖疼怎么办呢? 局部的关节受到风寒 *** ,或者局部的肌肉扭伤, *** 神经,导致出现疼痛。
指导意见:
注意休息,不要劳累,多进行局部的热敷和 *** 调理,也可以使用活血止痛膏外敷治疗。
问题四:长期跑步膝盖疼怎么办 你应该是运动过度,导致膝盖软骨磨损严重,从而引起疼痛的,建议减少跑步次数,给膝盖修复时间,此外多吃胶质蛋白之类的食物(猪蹄 猪皮等),最后,买个护膝吧,很有用的。
问题五:跑步以后膝盖痛怎么办 70分 首先是休息,避免再次 *** 膝关节。同时通过加强腿部力量练习,思考是不是跑步动作对不对,或是否运动量过大或准备活动不充分。
问题六:一跑步就膝盖疼怎么办 膝关节炎 病种:膝关节炎
膝关节炎是膝关节的常见疾病,骨关节炎的主要特征包括有软骨退行性病变和关节边缘骨赘的形成。常说的膝关节炎一般是指类风湿性膝关节炎,创伤后关节炎和骨性膝关节炎的统称。
分类:
骨关节炎
是最常见的关节炎,一般认为是慢性进行性退化性疾病。以软骨的慢性磨损为特点。常在中老年发病,在疾病的初期,没有明显的症状,或症状轻微。早期常表现为关节的僵硬不适感,活动后好转。遇剧烈活动可出现急性炎症表现,休息及对症治疗后缓解。
创伤后关节炎
是膝关节创伤后逐渐出现的关节炎。临床表现与骨关节炎相近,但是有明确的外伤史,如:经关节的骨折,韧带损伤或半月板损伤。
类风湿性关节炎
是关节炎的炎症性类型,早期以关节的滑膜炎症为主,继而侵蚀关节软骨,造成关节功能的严重丧失,晚骨关节炎的临床症状期残留严重畸形。类风湿性关节炎可发生在任何年龄,以年轻人居多,通常累及双膝。症状:
关节炎的最常见症状就是疼痛,缓慢发生。有时也可突然发生。关节表现为僵硬和肿胀,关节屈伸活动受限。晨起疼痛加重,并伴有晨僵。疼痛往往在长距离行走、爬楼梯及下蹲后加重。疼痛也会使病人感到关节无力,肌肉萎缩。疼痛程度在很多病人与天气变化有关。骨性关节炎的症状:
骨关节炎一般症状包括:深部的关节疼痛、轻度的关节僵直、活动受限、关节功能丧失、关节发出吱吱声或噼啪声、肿胀等等。不同部位的具体表现如下。
1)手指骨关节炎:一个或多个手指红肿发痛,手指末端关节发生骨膨大,骨膨大也可发生在近端指关节。为多发性,中年女性多见,以累及远端指间关节为主;男性少见。都有家族遗传倾向。女性的手指骨关节炎表现:晨起指关节僵硬与疼痛,活动后好转,慢慢有对称的隆起逐成结节,最后出现手指畸形,有时还有小囊肿形成。家族性倾向非常明显。
2)膝关节炎:可为单发性,或双侧性,女性偏多且往往是体重超标者。中年后的症状:当坐起立行时觉得膝部酸痛不适,走了一时症状消失,这是早期表现。疾病的发展,活动并不能缓解疼痛,且上下楼梯或下蹲与座起站应都有些困难,需手在膝盖上撑助才行。多走之后膝关节有些肿,或肿得厉害,还可以抽出一些淡黄色液体。由于滑膜与关节囊有病变而增厚,活动时可有响声,如果是关节内有游离体形成,可影响关节活动,并不时有关节绞锁现象。到最后出现膝关节畸形,例如膝关节屈曲挛缩,O形腿或X形腿,甚至拄拐杖才能行走。
3)足部的骨关节炎:当鞋子太紧或穿高跟鞋时,大脚趾根部疼痛;骨膨大(结节突出)发生趾滑囊炎。
4)脊柱的骨关节炎:出现颈部及下背部的疼痛;游走于胳膊及腿的疼痛;关节周围骨质向外生长形成的骨刺可 *** 脊椎神经,引起受累身体部位的麻木和麻刺感。
5)髋关节的骨关节炎:出现腹股沟、臀部或大腿外侧的疼痛类风湿性关节炎的症状:
1、有急性和慢性、单关节或多关节发病之分,早期表现膝关节疼痛、肿胀,双手指关节肿胀,急性期可有发热、出汗和白细胞增多,慢性膝关节炎缓慢肿痛,可持续数年。
2、早晨关节僵硬,活动后逐渐减轻,晨僵一般超过1小时。
3、肌肉萎缩,膝关节骨性肥大畸形。
4、膝关节肿胀,可抽出大量积液,严重者可累及小腿肿胀。
5、实验室化验:类风湿因子阳性,但阴性也不能否定诊断。血常规中血红蛋白、白细胞正常,血小板常不明原因增多,血沉在急性期升高,早期或静止期可正常,C-反应蛋白试验早期阳性,比血沉升高出现早。关节腔积液检查:混浊、粘稠度不高,细胞与蛋白含量增多。
6、X光片表现:早期软组织肿胀,关节周围骨质疏松。晚期关节面明显不......>>
问题七:跑步之后右膝盖疼怎么办? 解答你的疑惑:
过度负荷都会造成膝部关节的劳损从而产生疼痛。好了就可以运动,不用担心的。
对膝关节疼痛,可采用热疗、水疗、超声波、针灸等物理治疗方法减轻急性发作时的疼痛。也可采用以活血化瘀为主要作用的中成药缓解疼痛。如果你是急性请到医院治疗。
运动过程中导致了膝关节疼痛,要立即停止运动,以免加重损伤。伤后24小时内,在痛处进行冷敷,冷敷时间保持30分钟。切忌热敷、 *** 、推拿或用药。24小时后配合镇痛消炎的外用止痛药扶他林乳胶剂 ,采用推拿进行舒筋活血,温经通络。
请采纳给力。
问题八:跑步膝怎么治 跑步者一旦发现膝关节疼痛,特别是髌腱韧带处出现疼痛,即应减少运动量;
疼痛比较严重的应该停止跑步2―4周,同时口服一些抗炎药物。
除此以外,采取适当的防治措施也是十分必要的。
自我牵拉患者可以自我进行牵拉,以改善症状。
方法:
(1)牵拉大腿后肌群:面向窗台站立,抬起一腿,将脚跟放在窗台上,尽量伸直膝关节。上身缓慢地向前弯曲,直到大腿后面的肌肉有被牵拉的感觉。保持这一姿势10秒钟,然后放松还原,重复压腿4―6次。两腿交替进行。
(2)牵拉小腿后肌群:面向墙站立,两脚前后分开,前腿弯曲,后腿伸直脚掌着地(不要抬脚跟),双手掌撑在墙上。上身不动,腰及臀部向前下方运动,直到小腿后面的肌肉有被牵拉的感觉。保持这一姿势10秒钟,然后放松还原,重复4―6次。两腿交替进行。
(3)牵拉大腿前肌群:右腿单脚站立,右手扶桌子或窗台,左腿向后屈曲膝关节,用左手握住左脚,并向左臀部牵拉,直到大腿前面的肌肉有被牵拉的感觉,保持这一姿势10秒钟,然后放松还原,重复4―6次。两腿交替进行。
㈨ 超声波对人类的帮助
超声波网络名片超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距,测速,清洗,焊接,碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大约等于人的听觉上限而得名。 目录[隐藏]超声波的简介 超声波的产生 超声波的主要参数 超声波的作用 超声波清洗原理 医学 超声学超声应用 超声波的特点 超声波的发展史 相关的文章 超声波清洗技术的应用 超声波的简介超声波的产生超声波的主要参数超声波的作用 超声波清洗原理 医学 超声学超声应用超声波的特点超声波的发展史相关的文章超声波清洗技术的应用
[编辑本段]超声波的简介科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫兹。
理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度.这就是超声波加湿器的原理.咽喉炎.气管炎等疾病,呼唤斤年时斤百 很难血流到达患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效.利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。超声波在医学方面应用非常广泛,像现在的彩超、B超、碎石(例如胆结石、肾结石祛眼袋 之类的)等。
[编辑本段]超声波的产生声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。 超声波是指振动频率大于20000Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在 2∽5兆Hz之间,常用为3∽3.5兆Hz(每秒振动1次为1Hz,1兆Hz=10^6Hz,即每秒振动100万次,可闻波的频率在16-20,000HZ 之间)。超声波是声波大家族中的一员。
超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。
频率高于2×104赫的声波。研究超声波的产生、传播、接收,以及各种超声效应和应用的声学分支叫超声学。产生超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。 [编辑本段]超声波的主要参数超声波的两个主要参数: 频率:F≥20K/Hz; 功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm2; 在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。 太小的声强无法产生空化效应。 [编辑本段]超声波的作用 超声波清洗原理
清洗的超声波应用原理是由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡(空化核)在声场的作用下振动,当声压达到一定值时,气泡迅速增长,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压力,破坏不溶性污物而使它们分散于清洗液中,当团体粒子被油污裹着而粘附在清洗件表面时,油被乳化,固体粒子即脱离,从而达到清洗件表面净化的目的。
虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“声呐”判断飞行前方是昆虫,或是障碍物的。而雷达的质量有几十,几百,几千千克,,而在一些重要性能上的精确度.抗干扰能力等,蝙蝠远优与现代无线电定位器.深入研究动物身上各种器官的功能和构造,将获得的知识用来改进现有的设备,这是近几十年来发展起来的一门新学科,叫做仿生学.
我们人类直到第一次世界大战才学会利用超声波,这就是利用“声呐”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。
医学
医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔是否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。
超声学
研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、
以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。
超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生
一系列力学的、热学的、电磁学的和化学的超声效应,包括以下4种效应:
①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。 [编辑本段]超声应用超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
超声波是声波大家族中的一员。
声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。
超声波是指振动频率大于20KHz以上的,人在自然环境下无法听到和感受到的声波。
超声波治疗的概念:
超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的。
在全球,超声波广泛运用于诊断学、治疗学、工程学、生物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范畴。
(一)工程学方面的应用:水下定位与通讯、地下资源勘查等 。
(二)生物学方面的应用:剪切大分子、生物工程及处理种子等 。
(三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超等 。
(四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等 。 [编辑本段]超声波的特点(一)超声波在传播时,方向性强,能量易于集中。
(二)超声波能在各种不同媒质中传播,且可传播足够远的距离。
(三)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。(治疗)
超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。 [编辑本段]超声波的发展史一、国际方面:
自19世纪末到20世纪初,在物理学上发现了压电效应与反压电效应之后,人们解决了利用电子学技术产生超声波的办法,从此迅速揭开了发展与推广超声技术的历史篇章。
1922年,德国出现了首例超声波治疗的发明专利。
1939年发表了有关超声波治疗取得临床效果的文献报道。
40年代末期超声治疗在欧美兴起,直到1949年召开的第一次国际医学超声波学术会议上,才有了超声治疗方面的论文交流,为超声治疗学的发展奠定了基础。1956年第二届国际超声医学学术会议上已有许多论文发表,超声治疗进入了实用成熟阶段。
二、国内方面:
国内在超声治疗领域起步稍晚,于20世纪50年代初才只有少数医院开展超声治疗工作,从1950年首先在北京开始用800KHz频率的超声治疗机治疗多种疾病,至50年代开始逐步推广,并有了国产仪器。公开的文献报道始见于1957年。到了70年代有了各型国产超声治疗仪,超声疗法普及到全国各大型医院。
40多年来,全国各大医院已积累了相当数量的资料和比较丰富的临床经验。特别是20世纪80年代初出现的超声体外机械波碎石术和超声外科,是结石症治疗史上的重大突破。如今已在国际范围内推广应用。高强度聚焦超声无创外科,已使超声治疗在当代医疗技术中占据重要位置。而在21世纪(HIFU)超声聚焦外科已被誉为是21世纪治疗肿瘤的最新技术。
超声波治病机理:
1.机械效应:超声在介质中前进时所产生的效应。(超声在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。使细胞内部结构发生变化,导致细胞的功能变化,使坚硬的结缔组织延伸,松软。
超声波的机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能,因此具有超声波独特的治疗意义。
2.温热效应:人体组织对超声能量有比较大的吸收本领,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。
产热过程既是机械能在介质中转变成热能的能量转换过程。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。
3.理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。实践证明一些理化效应往往是上述效应的继发效应。TS-C型治疗机通过理化效应继发出下列五大作用:
A.弥散作用:超声波可以提高生物膜的通透性,超声波作用后,细胞膜对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,加速代谢,改善组织营养。
B.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。
C.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。
D.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。
E.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。胶原合成及成熟。促进或抑制损伤的修复和愈合过程。从而达到对受损细胞组织进行清理、激活、修复的过程。
量子声学。
超声波还可以进行雷达探测.清洗较为精细的物品,如钟表,可以利用超声波来击碎病人体内胆结石,还可以利用超声波测距.
超声波检测还用于电阻焊的焊点强度的检测。
人耳可以听见的波动,其频率约在16Hz到20KHz之间,如果”波动〃的频率高於此范围,则人类则无法听见,特称之为超音波.所谓”波动〃即为物质中的粒子受外力作用时所产生的机械性振汤.例如将悬挂於弹簧下方的物体向下拉使弹簧伸长,然后将物体放开,则该物体受弹簧力的作用,产生一上下往复性的振动,其偏离静止位置的移动与时间的关系,即为正弦波.
超声波依其波传送方向的波动方式可分为纵波,横波,表面波,蓝姆波四种.其在料件中之传送,根据能量不灭定律,音波在一种物质中传送,或由一种物质传入另一种物质时,由于受到衰减,反射及折射的作用,其能量必然愈来愈弱;但是在材料密度较大的部分,音压却会增大〈但因音阻抗亦变大,能量仍是减少〉,反之在疏松的部分,其音量变大. [编辑本段]相关的文章《夜晚的实验 》— 出自苏教版语文六年级下册
意大利科学家斯帕拉捷习惯晚饭后到附近的街道上散步。他常常看到,很多蝙蝠灵活的在空中飞来飞去,却从不会撞到墙壁上。这个现象引起了他的好奇:蝙蝠凭什么特殊本领在夜空中自由自在的飞行呢?
1793年夏天,一个晴朗的夜晚,喧腾热闹的城市渐渐平静下来。斯帕拉捷匆匆吃完饭,便走出街头,把笼子里的蝙蝠放了出去。当他看到放出去的几只蝙蝠轻盈敏捷地来回飞翔时,不由得尖叫起来。因为那几只蝙蝠,眼睛全被他蒙上了,都是“瞎子”呀。
斯帕拉捷为什么要把蝙蝠的眼睛蒙起来呢?原来,每当他看到蝙蝠在夜晚自由自在的飞翔时,总认为这些小精灵一定长着一双特别敏锐的眼睛,就不可能在黑夜中灵巧的多过各种障碍物,并且敏捷的捕捉飞蛾了。然而事实完全出乎他的意料。斯帕拉捷很奇怪:不用眼睛,蝙蝠凭什么来辨别前方的物体,捕捉灵活的飞蛾呢?
于是,他把蝙蝠的鼻子堵住.结果,蝙蝠在空中还是飞的那么敏捷、轻松。“难道他薄膜似的翅膀,不仅能够飞翔,而且能在夜间洞察一切吗?”斯帕拉捷这样猜想。他又捉来几只蝙蝠,用油漆涂满它们的全身,然而还是没有影响到它们飞行。
最后,斯帕拉捷堵住蝙蝠的耳朵,把他们放到夜空中。这次,蝙蝠可没有了先前的神气。他们像无头苍蝇一样在空中东碰西撞,很快就跌落在地。
啊!蝙蝠在夜间飞行,捕捉食物,原来是靠听觉来辨别方向、确认目标的!
斯帕拉捷的实验,揭开了蝙蝠飞行的秘密,促使很多人进一步思考:蝙蝠的耳朵又怎么能“穿透”黑夜,“听”到没有声音的物体呢?
后来人们继续研究,终于弄清了其中的奥秘。原来,蝙蝠靠喉咙发出人耳听不见的“超声波”,这种声音沿着直线传播,一碰到物体就像光照到镜子上那样反射回来。蝙蝠用耳朵接受到这种“超声波”,就能迅速做出判断,灵巧的自由飞翔,捕捉食物。
现在,人们利用超声波来为飞机、轮船导航,寻找地下的宝藏。超声波就像一位无声的功臣,广泛地应用于工业、农业、医疗和军事等领域。斯帕拉捷怎么也不会想到,自己的实验,会给人类带来如此巨大的恩惠。
超声波焊接——
应用超声波可以对热塑性工件使用熔接、铆焊、成形焊或点焊等多种方法进行焊接。超声波焊接设备既可以独立操作,也可以用于自动化生产环境。那