1. 超声波振头额定电流怎么计算
知道这两个参数就够了,I=P/V。
2. 超声波功率怎么计算,电压与电流的乘积比震子功率怎么小这么多
这里面 有个电声转换效率的问题
现在普遍的功率是 安装单个震子的 功率总和相加的。
3. 超声波输出功率怎么计算电流×电压吗那么电压是380,还是220。谢谢
一般来说,超声波输出(电)功率,是超声波元器件上的电压和电流的乘积;
而你说的380v或者220v的电压是哪儿的电压啊?如果是超声波设备的输入电源电压,也可以计算或者测量其电流,然后得到的功率,计算该设备的总功耗,是包括超声波输出电功率在内的;
4. 超声波的功率怎么测试
超声波清洗机功率计算:
(1)、按换能器(俗称震头)来计算的,目前市场上换能器的功率有两种:50W/1PCS;60w/PCS。超声波清洗机的功率计算方式:换能器的数量N×50W或者N×60W。
(2)、知道清洗槽的长宽就可以了,100mm距离一个震子,横竖都是这个距离,震子功率一般采用50W或60W的.600×400=240000除以10000=24只震子,24×50W=1200W 24×60W=1440W。
(3)、槽体一般放置在底部,600×400mm的面上,一般情况均匀排布24个振子就可以了,如果污染重,可适当加大功率,均匀放置28个,总功率大约1400w,用一台1500w的发生器就适合。
(4)、如果振子放如果放在下面,超声波清洗机的功率计算就是60×40×0.55=1320W。
频率低,空化效应越容易产生,而且在低频情况下液体受到的压缩和稀疏作用有更长的时间间隔,使气泡在崩溃前能生长到较大的尺寸,增高空化强度,有利于清洗作用。40KHZ左右的频率,在相同声强下,产生的空化泡数量比频率为20KHZ时多,穿透力较强,宜清洗表面形状复杂或有盲孔的工件,空化噪音较小,但空化强度较低,适合清洗污物与被清洗件表面结合力较弱的场合。
频率越高,空化阀值越高。频率低,空化阀值越低,越容易产生空化效应。低频超声波清洗一般在大型部件表面或者污物与工件表面粘合度高的情况下使用,高频超声波适合于清洗一些精密零件。从超声波清洗效果及经济性来考虑,一般选取频率在20~130KHz。超声波清洗机功率的选择对于超声波清洗机的清洗效果和清洗时间会产生很大的影响,只有合理的选择超声波清洗机的功率,才会产生很好的清洗效果。
5. 超声波功率怎么计算,电压与电流的乘积比震子功率怎么小这么多
这里面
有个电声
转换效率
的问题
现在普遍的功率是
安装单个震子的
功率总和相加的。
超声波输出功率的大小,由
压电陶瓷片
的直径和厚度、材质、设计工艺决定,一但
换能器
定型,最大功率也就定型了,衡量输出能量的大小是一个复杂的过程,不是换能器越大,电路使用功率
管越
多,输出能量就越大,只有相当复杂的振幅测量仪,才能准确测量超声波振幅,由于多数用户对超声波知识缺少了解,加上一些销售人员的误导,导致用户误以为,
超声波设备
耗电越大功率越大。其实消耗电能多少并不能反映输出超声波功率的大小,如产生纵向能量低,而消耗电流大,只能说明选用设备的效率低下。
6. 如何通过电流计算超声波液位计上面的数值,我用的是4-20mA的 比如说我量出来 液位计的输出电流
信号输出和量程范围正比关系:0对应4ma 满量程对应20ma。
根据量程一算就可以出来。
传感器厂家Q175821424
7. 超声波流量计的测量原理
当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,并且其传播时间的变化正比于液体的流速,其关系符合下列表达式
其中
θ为声束与液体流动方向的夹角
M 为声束在液体的直线传播次数
D 为管道内径
Tup 为声束在正方向上的传播时间
Tdown为声束在逆方向上的传播时间
ΔT=Tup –Tdown
设静止流体中的声速为c,流体流动的速度为u,传播距离为L,当声波与流体流动方向一致时(即顺流方向),其传播速度为c+u;反之,传播速度为c-u.在相距为L的两处分别放置两组超声波发生器和接收器(T1,R1)和(T2,R2)。当T1顺方向,T2逆方向发射超声波时,超声波分别到达接收器R1和R2所需要的时间为t1和t2,则
t1=L/(c+u); t2=L/(c-u)
由于在工业管道中,流体的流速比声速小的多,即c>>u,因此两者的时间差为 ▽t=t2-t1=2Lu/cc 由此可知,当声波在流体中的传播速度c已知时,只要测出时间差▽t即可求出流速u,进而可求出流量Q。利用这个原理进行流量测量的方法称为时差法。此外还可用相差法、频差法等。 如果超声波发射器发射连续超声脉冲或周期较长的脉冲列,则在顺流和逆流发射时所接收到的信号之间便要产生相位差▽O,即▽O=w▽t=2wLu/cc
式中,w为超声波角频率。当测得▽O时即可求出u,进而求得流量Q。此法用测量相位差▽O代替了测量微小的时差▽t,有利于提高测量精度。但存在者声速c对测量结果的影响。 为了消除声速c的影响,常采用频差法。由前可知,上、下游接收器接受到的超声波的频率之差为▽f可用下式表示 ▽f=[(c+u)/L]-[(c-u)/L]=2u/L
由此可知,只要测得▽f就可求得流量Q,并且此法与声速无关。超声波技术及其应用一、没测量水位概况
水电站多采用浮子式液位计或投入式液位计来进行水位测量。其缺点为:测量精度低,不可靠,经常出现浮子卡死不动和传感器堵塞导致测不准;维护工作量大,安装、调试不便,采集到的仅是模拟告警信号,不能直接进入电厂计算机监控系统。对无人值班电厂不实用。
通过对拦污栅水位测量系统进行了反复对比,优化得出最后的方案设计,采用超声波液位计对栅前、栅后水位进行实时准确监测,超声波液位计用PLC对采集量进行处理。并且把实时水位和压差数据送到中控室,超声波液位计显示和越限报警。超声波液位计同时采用RS422/RS232接口,又把实时数据送到大坝集中控制室工控机,处理成计算机通信报文,最终将采集量送到电厂计算机监控系统上位机。
该项目实施后不仅满足栏污栅栅前、栅后水位及压差的多点实时监测,及报警功能,而且结束了拦污栅测量系统独立工作,无法与电厂计算机监控系统通讯的局面。实现与闸门系统的监视功能、控制功能以及故障时ON-CALL寻呼系统功能的集成。满足了无人值班电站的需要。该技术在云南省电力系统还是第一家。 超声波液位计测量水位的原理以及安装要求 超声波液位计工作时,高频脉冲声波由换能器(探头)发出,遇被测物体(水面)表面被反射,折回的反射回波被同一换能器(探头)接收,转换成电信号。脉冲发送和接收之间的时间(声波的运动时间)与换能器到物体表面的距离成正比,声波传输的距离S与声速C和传输时间T之间的关系可以用公式表示:S=CⅩT/2
例如:声速C=344m/s,传输时间为50ms,即可算出传输的距离为17.2m,测定距离为8.6m。
三.可编程超声波式拦污栅水位测量系统在田坝电站应用产生的效果
用超声波液位计测量大坝水位在当今国内尚不普遍,技术上尚无经验可以借鉴。在这样的情况下,我们充分利用PLC与超声波液位计这一领域的先进技术,按照总体规划,长远考虑,一次到位,避免重复改造,重复投资的这一原则,对该项目进行自行设计,全面顺利地完成了这一课题。在该领域取得了较有价值的经验。为目前我国国内水电站实现对大坝水位监测系统提供了一个可以借鉴的范例。
8. 超声波能量如何计算有没有具体的计算公式
超声波能量无法计算,但可以使用超声波热量表进行测量。
超声波热量表通过超声波的方法测量流量及显示水流经热交换系统所释放或吸收热能量的仪表。它通过两种传感器测得的物理量——热载体的流量和进出口的温度,再经过密度和热焓值的补偿及积分计算,才能得到热量值。它是一种以微处理器和高精度传感器为基础的机电一体化产品。
1、超声波速差法(时差法)原理:是依靠超声波信号在流体中传播的时间差,来测量流体流量。
2、当超声波速在流体中传播时,流体的流动将使超声波信号的传播速度发生传播的时间差。时间差的大小与流体的流速成正比关系。由此,便可测量流体流量。
(8)超声波测量怎么计算电流扩展阅读:
超声波的两个主要参数:
1、频率:F≥20KHz(在实际应用中因为效果相似,通常把F≥15KHz的声波也称为超声波);
2、功率密度:p=发射功率(W)/发射面积(cm2),通常p≥0.3w/cm2。
在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时;
其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞一空化核。
此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污垢撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。太小的声强无法产生空化效应。
9. 调节超声波清洗机发生器的电流是怎么计算的
超声波发生器显示的电流值*220,就是功率的大小,由于输出的占80%左右,再除于0.8就是实际功率了。