A. 金属超声波探伤仪的介绍
金属超声波探伤仪是一种便携式工业无损探伤仪器,它能够快速、便捷、无损伤、精确地进行工件内 部多种缺陷(包括纵向裂纹、横向裂纹、疏松、气孔、夹渣等)的检测、定位、评估和诊断。既可以用于实验室,也可以用于工程现场。
B. 超声波在检测金属与非金属时有什么区别
原理是一样的。金属与非金属使用的频率范围不同;使用的探头也不同。
C. 简述使用超声波探伤判断金属内部裂纹的方法
钢结构在现代工业中占有重要地位,更是海洋石油行业重要的基础设施,在国民经济和社会发展中起到十分重要的作用。钢结构在建造焊接过程中受到各种因素的影响,难免产生各种缺陷,甚至是裂纹等危害性较大的缺陷,若在建造过程中不及时发现并将其移除,将可能发生重大突发事件,甚至危及生命安全。因此,无损检测在建造环节中尤为重要,目前常用的无损检测方法有:射线检测、超声波检测、磁粉检测、渗透检测等,而超声波检测由于其效率高、灵敏度高、无辐射无污染等优点,在海洋钢结构的建造中得到广泛的应用。
1 超声波检测基础
超声检测是指超声波与工件相互作用,就反射、透射和散射波进行研究,对工件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
1.1 超声波检测原理
利用超声波对材料中的宏观缺陷进行探测,依据的是超声波在材料中传播时的一些特性,如:声波在通过材料时能量会有损失,在遇到两种介质的分界时,会发生反射等等,其工作原理是:
1)用某种方式向被检试件中引入或激励超声波;
2)超声波在试件中传播并与其中的物体相互作用,其传播的方向或特征会被改变;
3)改变后的超声波又通过检测设备被检测到,并可对其处理和分析;
4)根据接收的超声波的特征评估试件本身及其内部存在的缺陷特征。
通常用以发现缺陷并对缺陷进行评估的基本信息为:
1)来自材料内部各种不连续的反射信号的存在及其幅值;
2)入射信号与接收信号之间的传播时间;
3)声波通过材料以后能量的衰减。
图1 超声检测示意图
1.2 超声波检测的优点和局限性
1.2.1 优点
与其他无损检测方法相比,超声检测方法的主要优点有:
(1)适用于金属、非金属、复合材料等多种材料的无损评价。
(2)穿透能力强,可对较大厚度范围的试件内部缺陷进行检测,可进行整个试件体积的扫查。
(3)灵敏度高,可检测到材料内部很小的缺陷。
(4)可较准确的测出缺陷的深度位置,这在很多情况下世十分必要的。
(5)设备轻便,对人体和环境无害,可作现场检测。
1.2.2 局限性
(1)由于纵波脉冲反射法存在盲区,和缺陷取向对检测灵敏度的影响,对位于表面和近表面的某些缺陷常常难以检测。
(2)试件形状的复杂性,如不规则形状,小曲率半径等,对超声波检测的课实施性有较大影响。
(3)材料的某些内部结构,如晶粒度,非均匀性等,会使灵敏度和信噪比变差。
2 横向裂纹检验
横向裂纹不仅给生产带来困难,而且可能带来灾难性的事故。裂纹焊接中最危险的缺陷之一,他严重削弱了工件的承载能力和腐蚀能力,即使不太严重的裂纹,由于使用过程中造成应力集中,成为各种断裂的断裂源。正因为裂纹有如此大的危害性,像JB/T 4730, GB 11345,AWS D1.1, API RP 2X等国内外各大标准中都有“裂纹不可接受”等类似描述。而超声波检测对缺陷性质判定没有射线检测直观,如果检测方法不当等原因造成横向裂纹的漏检或误判,其都有不良结果:若把其他缺陷判为横向裂纹造成不必要的返修,进而影响材料韧性等性能;把裂纹判为点状缺陷放过,则工程就存在较大的安全隐患。所以正确选择探测方法和对回波特性分析,对横向裂纹的超声波检测尤为重要。
2.1 探头角度的选择
纵波直探头:横向裂纹属面状缺陷,一般和探测面垂直,而0°直探头适用于发现与探测面平行的缺陷,所以直探头不能有效的探测出横向裂纹。
横波斜探头:对同一缺陷,70°和60°探头声程较大,声波能量由于被吸收和散射造成衰减严重,尤其只在检测母材厚度较大的焊缝时,回波高度较低,对发现缺陷波和波形分析不利,进而影响是否为横向裂纹的判定。而45°探头具有声束集中、声程短衰减小,声压往复透射率高的特点,所以选用45°探头具有良好的效果。图2是70°,60°和45°探头在相同的基准灵敏度的前提下,对同一横向裂纹的回波比较:
(a)70°探头回波 (b)60°探头回波
(c)45°探头回波
图2 70°,60°和45°探头对同一横向裂纹的回波
2.2 横向裂纹的扫查
图3 焊缝UT扫查方式平面图
常见的焊接缺陷(如夹渣、未熔合、未焊透等)大多与焊缝轴线平行或接近平行,或以点状形式存在,针对这种情况,综合使用图3中的方式A、方式B和方式C即可,但该三种扫查方式对横向裂纹等与焊缝轴线垂直(与声束方向平行)的横向缺陷无回波显示,即无法被检出。为能有效探出焊缝横向裂纹应尽可能使声束尽可能平行于焊缝。可用如下几种扫查方式探测横向裂纹:
2.2.1 骑缝扫查
如果焊缝较平滑或焊缝加强高已经打磨处理,探头“骑”在焊缝上探测是检查横向裂纹的极为有效的方法,可采用在焊缝上直接扫查的方式,如图3方式D所示。
2.2.2 斜平行扫查
若焊缝表面较为粗糙且不宜进行打磨处理,为探测出焊缝中的横向裂纹,可用探头与焊缝轴线成一个小角度或以平行于焊缝轴线方向移动扫查,如图3方式E所示。 2.2.3 用双探头横跨焊缝扫查法
将两个斜探头放在焊缝两侧,组成一发一收装置,此时若焊缝中有横向裂纹,发射的超声波经反射后会被接收探头接收从而检出缺陷,如图4所示。
图4 双探头横跨焊缝扫查法
该三种方法各有特点,斜平行扫查操作简单、效率高、焊缝无需处理、耦合较好,但由于声束方向与裂纹不能完全垂直而造成灵敏度不高;双探头横跨焊缝扫查法操作精度要求高困难大、效率不高;骑缝扫查对焊缝表面要求较高,对埋弧焊或其他焊接方法但焊缝表面进过处理的焊缝,表面相对较平滑,能够有效的耦合,该方法较为直接,且效率高,灵敏度高,所以在很多情况下“骑缝扫查”是首选。
2.3 扫查灵敏度
按照各项目业主所规定的标准调节。
3 横向裂纹的判别
根据形状,我们把缺陷分为点状缺陷、线状缺陷和面状缺陷(裂纹、未熔合)。显然,反射体形状不同,超声波反射特性必然存在一定的差异,反过来,通过分析反射波、缺陷位置、焊接工艺等信息,就可以推测缺陷的性质。
横向裂纹具有较强的方向性,当声束与裂纹垂直时,回波高度较大,波峰尖锐,探头转动时,声束与裂纹角度变化,声束能量被大量反射至其他位置而无法被探头接收,回波高度急剧下降,这一特性是判定横向裂纹的主要依据。
检测过程中横向裂纹的判别可以按以下步骤:
1)在扫查灵敏度下将探头放在的焊缝缝上扫查(参考2.2节扫查方式);
2)发现横向显示后,找到最高波,确定是否为缺陷回波;
3)定缺陷回波后,定出缺陷的具体位置,并在焊缝上做出标记;
4)探头围绕缺陷位置做环绕扫查(如图5所示);
图5 环绕扫查示意图 图6 动态波形图1
环绕扫查时回波高度基本相同,变化幅值不大,其动态波形如图6所示,则可以判定其为点状缺陷;若环绕扫查时其动态波形如图7或图8所示,结合静态波形,可判断为横向裂纹,在条件允许的情况下可用同样的方法到焊缝背面扫查确认。
图7 动态波形图2 图8 动态波形图3
5)若条件允许可打磨到裂纹深度,借助磁粉检验(MT)进一步验证。
图9 横向裂纹MT验证
4 结论
超声波探伤是检出焊缝横向裂纹的有效手段,尤其是厚壁焊缝,射线检测灵敏度下降,难以发现其中的横向裂纹。用超声波检测方法,选择正确的参数、合适的扫查方式,掌握横向裂纹的静态和动态波形特点,能够有效的判别横向裂纹,这已举措已经在海洋石油工程的各个项目中得到应用,并多次准确成功检测出横向裂纹,保证了多项工程质量。
D. 金属材料可以用超声波探伤吗
金属材料可以用超声波探伤
超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
涡流检测就是运用电磁感应原理,将正弦波电流激励探头线圈,当探头接近金属表面时,线圈周围的交变磁场在金属表面产生感应电流。
对于平板金属,感应电流的流向是以线圈同心的圆形,形似旋涡,称为涡流。同时涡流也产生相同频率的磁场,其方向与线圈磁场方向相反。 涡流通道的损耗电阻,以及涡流产生的反磁通,又反射到探头线圈,改变了线圈的电流大小及相位,即改变了线圈的阻抗。因此,探头在金属表面移动,遇到缺陷或材质、尺寸等变化时,使得涡流磁场对线圈的反作用不同,引起线圈阻抗变化,通过涡流检测仪器测量出这种变化量就能鉴别金属表面有无缺陷或其它物理性质变化。
影响涡流场的因素有很多,诸如探头线圈与被测材料的耦合程度,材料的形状和尺寸、电导率、导磁率、以及缺陷等等。因此,利用涡流原理可以解决金属材料探伤、测厚、分选等问题
E. 什么是超声波测厚仪它的作用是怎样的
超声波测厚仪/测厚仪/手持式超声波测厚仪/型号:HAD-HCH-2000D
HAD-HCH-2000D型超声波测厚仪的内部电路均采用最新数字电子技术,外部采用金属机壳,具有体积小、功耗低、穿透力强、抗摔打、抗振动、示值稳定、检测精度高、可存储测量值、带公英制转换、可连接微机、打印机等特点,是您在实际应用中首选的仪器。
1、测量范围:0.65~260mm(可选配高温探头、铸铁探头、小管径探头)。
2、声速范围:1000~9990m/s。
3、显示精度:0.01mm。
4、测量误差:1%*厚度值±0.05mm。
5、数据存储:1000个测量值。
6、使用环境:温度-10°~60°C,相对湿度小于90%。
7、外形尺寸:50×24×105mm;金属机壳。
8、探头频率:2MHz-10MHz。
9、带自动背景光。
10、电源:一节5#电池。
11、校准值自动记忆、自动背景光、全中英文显示、公英制转换、穿透力强、示值稳定、检测精度高、可连接微机、打印机。
F. 用超声波检查金属内部是否有气泡,裂痕;用超声波清洗碗碟;用B超给病人检查;分别是超声波的什么特征
利用超声波特用的特性:
穿透与反射。
洗碗用的是超声波的清洗:空化效应。
G. 超声波金属探伤仪能探测什么
OU5100数字式超声波探伤仪是一款真彩显示全数字式超声波探伤仪,它能够快速便捷、无损伤、精确地进行工件内部多种缺陷(裂纹、夹杂、气孔等)的检测、定位、评估和诊断。既用于实验室,也用于工程现场检测。本仪器广泛应用在各地特检院、建设工程质量检测站、锅炉压力容器制造、工程机械制造业、钢铁冶金业、钢结构制造、船舶制造、石油天然气装备制造等需要缺陷检测和质量控制的领域,也广泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。 具体内容网络一下oupu17查询一下
H. 超声波探伤与X射线探伤的的原理与区别
运用超声检测的方法来检测的仪器称之为超声波探伤仪。它的原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声检测方法通常有穿透法、脉冲反射法、串列法等。穿透能力强,探测深度可达数米; x射线能穿透一般可见光所不能透过的物质。其穿透能力的强弱,与x射线的波长以及被穿透物质的密度和厚度有关。x射线波长愈短,穿透力就愈大;密度愈低,厚度愈薄,则x射线愈易穿透。在实际工作中,通过球管的电压伏值(kV)的大小来确定x射线的穿透性(即x射线的质),而以单位时间内通过x射线的电流(mA)与时间的乘积代表x射线的量。 能测的最大厚度与 x射线强度有关,一般金属厚度在0.3米以下
I. 不锈钢板超声波探伤有哪些执行标准分别是哪些
超声波检测国家标准总汇
GB 3947-83 声学名词术语
GB/T1786-1990 锻制园并的超声波探伤方法 GB/T 2108-1980 薄钢板兰姆波探伤方法 GB/T2970-2004 厚钢板超声波检验方法 GB/T3310-1999
铜合金棒材超声波探伤方法
GB/T3389.2-1999 压电陶瓷材料性能测试方法纵向压电应变常数d33的静态测试 GB/T4162-1991 锻轧钢棒超声波检验方法
GB/T 4163-1984 不锈钢管超声波探伤方法(NDT,86-10)
GB/T5193-1985 钛及钛合金加工产品(横截面厚度≥13mm)超声波探伤方法(NDT,89-11)(eqv AMS 2631)
GB/T5777-1996 无缝钢管超声波探伤检验方法(eqv ISO9303:1989) GB/T6402-1991 钢锻件超声波检验方法
GB/T6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T6519-2000 变形铝合金产品超声波检验方法
GB/T7233-1987 铸钢件超声探伤及质量评级方法(NDT,89-9) GB/T7734-2004 复合钢板超声波检验方法
GB/T7736-2001 钢的低倍组织及缺陷超声波检验法(取代YB898-77) GB/T8361-2001 冷拉园钢表面超声波探伤方法(NDT,91-1) GB/T8651-2002 金属板材超声板波探伤方法
GB/T8652-1988 变形高强度钢超声波检验方法(NDT,90-2)
GB/T11259-1999 超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92) GB/T11343-1989 接触式超声斜射探伤方法(WSTS,91-4) GB/T11344-1989 接触式超声波脉冲回波法测厚
GB/T11345-1989 钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2~3) GB/T 12604.1-2005 无损检测术语 超声检测 代替JB3111-82 GB/T12604.1-1990
GB/T 12604.4-2005
无损检测术语 声发射检测 代替JB3111-82 GB/T12604.4-1990
GB/T12969.1-1991 钛及钛合金管材超声波检验方法 GB/T13315-1991 锻钢冷轧工作辊超声波探伤方法 GB/T13316-1991 铸钢轧辊超声波探伤方法
GB/T15830-1995
钢制管道对接环焊缝超声波探伤方法和检验结果分级
GB/T18182-2000 金属压力容器声发射检测及结果评价方法
GB/T18256-2000 焊接钢管(埋弧焊除外)—用于确认水压密实性的超声波检测方法(eqv
ISO 10332:1994)
GB/T18329.1-2001 滑动轴承多层金属滑动轴承结合强度的超声波无损检验 GB/T18604-2001 用气体超声流量计测量天然气流量
GB/T18694-2002 无损检测 超声检验 探头及其声场的表征(eqv ISO10375:1997) GB/T 18696.1-2004 声学 阻抗管中吸声系数和声阻抗的测量第1部分:驻波比法 GB/T18852-2002 无损检测 超声检验 测量接触探头声束特性的参考试块和方法(ISO12715:1999, IDT)
GB/T 19799.1-2005 无损检测 超声检测 1号校准试块
GB/T 19799.2-2005
无损检测 超声检测 2号校准试块
GB/T 19800-2005 无损检测 声发射检测 换能器的一级校准 GB/T 19801-2005 无损检测 声发射检测声发射传感器的二级校准 GJB593.1-1988 无损检测质量控制规范超声纵波和横波检验 GJB1038.1-1990 纤维增强塑料无损检验方法--超声波检验 GJB1076-1991 穿甲弹用钨基高密度合金棒超声波探伤方法 GJB1580-1993 变形金属超声波检验方法 GJB2044-1994 钛合金压力容器声发射检测方法 GJB1538-1992 飞机结构件用TC4 钛合金棒材规范 GJB3384-1998 金属薄板兰姆波检验方法 GJB3538-1999 变形铝合金棒材超声波检验方法
ZBY 230-84
A型脉冲反射式超声探伤仪通用技术条件(NDT,87-4/84版)(已被JB/T10061-1999代替)
ZBY 231-84
超声探伤仪用探头性能测试方法(NDT,87-5/84版)(已被JB/T10062-1999代替)
ZBY 232-84 超声探伤用1号标准试块技术条件(NDT,87-6/84版)(已被JB/T10063-1999代替)
ZBY 344-85 超声探伤用探头型号命名方法(NDT,87-6) ZBY 345-85 超声探伤仪用刻度板(NDT,87-6)
ZB G93 004-87 尿素高压设备制造检验方法--不锈钢带极自动堆焊层超声波检验 ZB J04 001-87
A型脉冲反射式超声探伤系统工作性能测试方法(NDT,88-6)(已被
B/T9214-1999代替)
ZB J74 003-88 压力容器用钢板超声波探伤(已废止) ZB J26 002-89 圆柱螺旋压缩弹簧超声波探伤方法
ZB J32 004-88 大型锻造曲轴超声波检验(已被JB/T9020-1999代替) ZB U05 008-90 船用锻钢件超声波探伤
ZB K54 010-89 汽轮机铸钢件超声波探伤及质量分级方法 ZB N77 001-90 超声测厚仪通用技术条件 ZB N71 009-89 超声硬度计技术条件
ZB E98 001-88 常压钢质油罐焊缝超声波探伤(NDT,90-1)(已被JB/T9212-1999代替) SDJ 67-83 水电部电力建设施工及验收技术规范:管道焊缝超声波检验篇 QJ 912-1985 复合固体推进剂药条燃速的水下声发射测定方法 QJ 1269-87 金属薄板兰姆波探伤方法 QJ1274-1987 玻璃钢层压板超声波检测方法 QJ 1629-1989 钛合金气瓶声发射检测方法
QJ 1657-1989 固体火箭发动机玻璃纤维缠绕燃烧室壳体超声波探伤方法 QJ 1707-1989 金属及其制品的脉冲反射式超声波测厚方法 QJ2252-1992 高温合金锻件超声波探伤方法及质量分级标准 QJ 2914-1997 复合材料结构声发射检测方法 CB 827-1975 船体焊缝超声波探伤
CB 3178-1983 民用船舶钢焊缝超声波探伤评级标准 CB/Z211-1984 船用金属复合材料超声波探伤工艺规程 CB1134-1985 BFe30-1-1管材的超声波探伤方法 CB/T 3907-1999 船用锻钢件超声波探伤
CB/T3559-1994 船舶钢焊缝手工超声波探伤工艺和质量分级 CB/T 3177-1994 船舶钢焊缝射线照相和超声波检查规则 TB 1989-87 机车车辆厂,段修车轴超声波探伤方法 TB 1558-84 对焊焊缝超声波探伤 TB 1606-1985 球墨铸铁曲轴超声波探伤 TB 2046-1989 机车新制轮箍超声波探伤方法
TB 2049-1989 机车车辆车轴厂、段修超声波探伤标准试块 TB/T1618-2001 机车车辆车轴超声波检验
TB/T 1659-1985 内燃机车柴油机钢背铝基合金双金属轴瓦超声波探伤 TB/T2327-1992
高锰钢辙叉超声波探伤方法