A. 超声波是什么意思请简短说。
超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大于人的听觉上限而得名。
超声波的波长相对来说比声波要短,通常的障碍物都会比超声波的波长大很多,所以说超声波的衍射能力不是很强,在介质一定密度不变的情况下,超声波能够沿着波的方向一致沿直线传波,超声波的波长相对来说越短的话,直射能力就越好。
当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。
在相同强度下,声波的频率越高,它所具有的功率就越大,所以说超声波跟声波相比呢,超声波的功率比声波要大很多的。
(1)超声波长与什么成正比扩展阅读
超声波在液体中随着液体的缝隙传播开时,液体的分子受到超声波的能量的传递,而具有能量,分子相互作用而产生大量的气泡,这些气泡构成了空化的前提条件,能量聚集到一定的程度的时候气泡破裂产生巨大的能量把整个液体破费,空化作用常常用于超声波清洗机、以及小型超声波清洗机的与原理应用。
超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。
超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力)。
经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。
超声波在,渔业上有很多的应用。可用于测距、测速、测障、清洗、焊接、碎石、杀菌消毒、检查金属产品的缺陷、焊接铝金属、洗衣服、在坡璃上钻孔、以及寻找沉没了的船只等。
B. 超声波功率和电流的关系
谐振状态下,电流转换为超声波功率输出。超声功率和电流成正比关系。电流电压产生的总功率=电路损耗+换能器损耗+超声波输出功率。大功率超声波的换能器自身损耗比较大的,主要是设计和材料问题。
C. 超声波的声强为什么与频率平方成正比可以给出推导过程吗
定义:声波平均能流密度的大小叫声强。
声强对面积积分,则为单位时间内通过一定面积的的声波能量,因具有功率的单位,又叫做声功率。声功率通常还很小,一个人说话的声功率仅约10^-5W,故一千万人同时说话,也只100W。人们发声所消耗的能量绝大部分均转化为其他形式例如热运动的能量,用于发声的仅约1%。
声传播时也伴随着能量的传播.用单位时间内通过垂直于声波传播方向的单位面积的能量(声波的能量流密度)表示.声强的单位是瓦/平方米.声强的大小与声速、声波的频率的平方、振幅的平方成正比.超声波的声强大是因为其频率很高,炸弹爆炸的声强大是因为振幅大.
声音强度由振动幅度的大小决定,以能量来计算称声强,以压力计算表示时称声压。声强(I)与声压(P)的关系为:
I=(P^2)/(ρv) (此时P为有效值,若P为幅值,则 I=(P^2)/(2ρv) )
其中ρ-介质密度,v-声速
公式
w=U^2*Ra.
W——声功率。U——流体的体积速度。Ra——声源的辐射电阻
声强又常以声功率Lw表示。
希望能帮助你,谢谢!
D. 超声波的能量与什么有关系
超声波的频率与振幅。
频率越大,波长越长,超声波的能量就越大
再大点超出超声波范围,变成次声波,威力比中子弹还厉害
E. 超声波
我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20,000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用于测距,测速,清洗,焊接,碎石等。在医学,军事,工业,农业上有很多的应用。
理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度.这就是超声波加湿器的原理.咽喉炎.气管炎等疾病,呼唤斤年时斤百很难血流到达患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效.利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。
F. 超声波频率,波长,波速与什么因素有关
频率是固定的,在同一频率底下,波长和材料的声速有关。波速是材料的特性。
G. 为什么一般来说超声波产生的震动比可闻声波更强烈振幅不是与频率无关吗
理论和实验均表明,
超声波的强度 与 频率的二次方成正比。
在其它条件相同的情况下,频率越高的超声波,其强度越大。
这里不是只考虑波动的振幅,还要考虑的是波数等因素。
频率越高,单位时间内的波数越大,相应的穿过单位面积的能量也越大。
所以,频率越高,强度越大。
H. 超声有什么物理特性
声速
声速与介质的体弹性系数和密度有关。由于介质的弹性系数与温度有关,因此声速也与温度有关。在超声诊断的频段中,人体组织的超声速度与频率无关,而且软组织中的声速都很接近,约为1540m/s。
波长、周期和频率
声波在介质中传播时,两个相邻的同相位点之间的距离,如相邻两点稠密部之间的距离(超声波在人体中一般是以纵波方式传播),称为声波的波长,以λ表示。波向前移动一个波长的距离所需的时间,称为声波的周期,以T表示。介质中任何一给定点在单位时间内通过的波敝,称为声波的频率,以f表示。它们之间的关系为
λ=C/f=CT
式中为声波的传播速度。
医学诊断中采用的超声波频率在1-20MHz范围内。
声阻抗
介质中任意点的密度ρ与该点处声波的传播速度C之积为此介质在该点处的声阻抗,以Z表示,即Z=ρC。它是表征介质的声学特性的一个重要物理量。声阻抗的变化将影响超声波的传播。声阻抗是采用反射回波法进行超声诊断的物理基础。
声压级与声强级
声压级LP是以分贝表示的某个声压P与参考分压P0的比值,即LP=20lg(P/P0)
声强级LI是以分贝表示的某个声强I与参考声强I0的比值,即LI=10lg(I/I0)
声强是表示声的客观强弱的物理量,它表示通过垂直于传播方向上单位面积的能流率。声强为
I=1/2(ρCω02A2)= p02/(2Z)
声强的单位是mW/cm2或W/m2。
声强与声源的振幅有关,振幅越大,声强也越大。对于平面超声波,他的总功率为强度I和面积S的乘积,即W=IS。
由于超声强度太大会破坏人体正常细胞组织,因其不可逆的生物效应。因此,国际上对诊断用超声强度安全剂量作出规定,一般接受的安全剂量为20mW/cm2。
超声波的指向性
对于平面园片换能器,在无吸收的介质中其波束形状有两个不同的区域即园柱形区和发散区或称为近场区和远场区。近场区的长度为D2/4λ,D为晶片直径,λ为该介质中传播的超声波长。在远场区,发散角由sinθ=1.22λ/D给出。可见,减小直径可缩短近场长度和增大,即加宽了波束。增加频率即减小波长时,加长了近场区,减少了发散角,可获得较窄的波束。
声强度沿中心轴距离的分布,近场区声强度有剧烈的起伏变化,存在着许多声强度为极小值的节点。这些节点可引起不希望有的盲点。在远场区声强都变化趋于平稳,单随着距离的增加,声强逐渐减弱。
超声波的反射与折射
当一束平面超声波入射到两种介质交界面上时,或者声阻抗的不连续处时,会产生反射和折射,并遵从反射和折射定律。
θI=θR
SinθI/SinθT=C1/C2
超声波的衰减
超声在介质中传播,其能量将随着距离的增加而减小,这种现象称为超声波的衰减。噪声衰减的因素主要有两类。一类是声束本身扩散,使单位面积上的能量下降,或反射,散射的结果,使能量不能再沿着原来的方向传播。在这一类事件中,声波的总能量并没有减少。另一类是,超声传播中,由于介质的吸收,将声能转换成为热能,因而使声能减小。着后一类的机理比较复杂,主要有粘滞吸收;弛豫吸收、相对运动吸收及空化气泡吸收。
对于给定的频率的超声波,其强度和压强幅度都随着距离的增大而按指数规律下降,可表示为:
I(x)=I0e-2αx
P(x)=P0e-αx
式中α为衰减系数。α是频率的函数。αmm = βfMHz。为常数。
衰减系数在很大程度上依赖于频率。这一点,我们在设计还是临床操作上都具有重大影响意义。实验结果表明,在医学超声频率范围内,人体组织对超声波的吸收系数几乎与超声波频率成正比。
I. 超声波的特性是什么
我们的耳朵只能分辨频率为20至2万赫的声音,频率比人的听频范围高的声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
穿透力强,可以用超声波测距离,就是我们所说的声纳,还有超声波的破碎力强,可以用来碎石,就是结石.
下面在详细介绍下:
超声波的基本特性
频率在2kHz以上的声波称之为超声波,由于频率f升高,波长λ变短使得超声波比普通声波具有特殊性,即近似于光的某些特征。如束射性,由一种媒质进人另一种媒质发生折射、反射等。同时有很强的被吸收性与衰减性,带有很强的能量。本节简要介绍超声波的几个主要特征。
【超声波的束射性】
人耳可感受的声音是无指向性的球面波,即以声源为中心呈球面向四周扩散周围均能听到声音。由于超声波频率很高,所以方向性就相对要强,方向性即柬射性。当超声波发生体压电晶体的直径尺寸远大于超声波波长时,则晶体所产生的超声波就类似于光的特性,如图1一1一1所示。
紧靠晶体辐射板的一段叫近场区,接近于圆柱状;离晶本辐射较远的部分,超声波以一定的角度扩散,叫远场区。若压晶体圆片的直径为D,超声波在该介中的波长为λ,则近区的长度为:
D2-λ2 D2
N= ———— ≈ —— (D》λ)
4λ 4λ
由上式看出,压电晶体片直径愈大或频率越高,即波长λ愈短,则近场区的长度愈长,此超声波场的束射性就愈好。
声学工作者用光衍射法,对医用超声波换能器的声场显示做了深入、生动的研究。
就是这个研究成果的一组照片,它对我们深入而又形象地理解超声波的束射性,超声波的聚焦性,都有很大的帮助。图1-2是这种是这种光衍射法的实验光路图。图中的He——Ne激光器的波长为6328A(埃),O为一组组合透镜,它将光束镜发出的扩散光束变为平行光束。最后在相屏上得到的是一个超声波声束的倒立的实相。图1-3图1-6的一组照片,就是从这个相屏上拍摄而成的。整个实验均在暗室中进行。图1-5所示的这张未聚焦的单片换能器的全景超声波束照片,是我们超声波治疗机所发出的超声波声束的生动、形象的显示,是值得我们深入研究和理解的。
理解了超声波的束射性,对超声波治疗有重要的意义。由于超声波具有很强的束射性,在超声波治疗时,要注意使用声头辐面垂直,对准治疗部位。以由于超声波声头辐射出的超声波场中心处最强,愈向外侧愈弱,所以,在超声波治疗操作时,一般都要以一定的速度,在治疗部位做小圆周或其它形式的移动,以使治疗部位得到的超声波剂量基本均匀,从而保证治疗效果的良好。
【超声波的透射、反射、折射与聚集】
由于超声波的频率较高,所以超声波在定向传播时,在两种不同媒质的分界面上,会出现类似于光线一样的透射、反射和折射现象。
光线的透射、反射与折射现象是常见的。例如,我们在一个黑暗的环境里将一束光线投身到一个盛满水的透明玻璃烧杯里,我们将十分清楚地看到光线在水面上产生的透射、反射与折射现象。我们采用图1一2所示的光衍射法,也可以清楚地看到超声波声束的反射、透射与折射现象。见图1一7。
光的聚集现象是常见的。如果我们手边在一个放大镜,在强烈的阳光下,太阳光经过放大镜的聚集到一点,就会将这一点上的纸或者香烟等物点燃。许多人都亲身做过这个实验。
超声波的聚集现象和光线的聚集现象是一样的。利用超声波聚集装置可以将超声波束会聚到一点,从而将超声波的声强提高几倍甚至几千倍,利用这样巨大的声强可以做许多很有意义的工作。例如:超声波切割、超声波钻孔、超声波打磨等。
【超声波的吸收与衰减】
声波在各种媒质中传播时,由于媒质要吸收掉它的一部分能量,所以,随着传播路程的增加,声波的强度会逐渐减弱。
在一个广场上,一个民族弦乐正在为广大群众作街头演出,许多人闻讯前去观看和欣赏那动听的音乐。当你从远处走近这个乐队时,首先听到的是那音调低沉的鼓声,随着你慢慢走近乐队,你就逐渐听到了锁呐声、笛声、二胡声等;当你最后走到乐队周围时,你才听到了那音调很高的清脆的铃声。
这个例子,很生动地说明了各种不同频率的声波,在空气中传播时被吸收的程度是不同的。频率越高的声波,空气对它的吸收越强,所以它传播的距离较短。例如上述乐队中音调很高的铃声;因其频率很高,空气对它的吸收作用很强,所以传不远。反之,对频率越低的声波,空气对它的吸收较少,因此,它传播的距离较长。上述乐队中音调低沉的大鼓声音传得很远,正是由于它的频率很低的缘故。
声波在媒质中传播时,被吸收而衰减的另一个特点是对于同一个声波,当它在围体、液体或气体,以及各种不同物质中传播时,它被吸收的程度也是不同的。对于一个频率固定的声波,在气体中传播时,它被吸收的最厉害;在液体中传播时,它吸收的较少;而在固体中传播时,则被吸收的最少。所以,声波在空气中传播的最短,在水中则可传播的远一些,而在金属中则能传播得很远。
以上关于声波吸收的两个特性,无论对可听声,或是对超声波,都是适用的。对于超声波来讲,由于它的频率很高,所发,它在空气中传播时,被吸特别厉害。据科学家们的实验,频率为100亿Hz的超声波,在它离开声源的一刹那间,马上会被空气全部吸收掉。在超声波治疗的临床应用中,对于超声波的吸收特性,必须予以足够的重视。这一点,在下面的有关章节中,将要详细谈到。
【超声波的巨大能量】
超声波之所以在工业、国防和医疗等方面发挥着独特而又巨大的作用,还有一个原因是由于超声波比一般可听声有着强大的功率。根据声学工作者的实验测定,一般的讲话声音的能量是很小的。假设我们想用普通说话的能量来烧开一壶水,那么,必须动员700多万人,连续大声喊叫12个小时才行。超声波具有的能量,要比一般可听声大的多。根据有关声学实验测定,频率为100万赫兹的超声波的能量,要比同幅度的频率为1000赫兹的可听声能量大100万倍。所以说,拥有巨大的能量,是超声波的一个重要特点。超声波的许多应用,也都是利用它的这一特点进行工作的。为什么超声波拥有这么强大的功率呢?这是由于声波到达某一物质中时,由于声波的振动作用,使物质中的分子随便之一起振动,两者振动的频率是一致的。物质分子振动的频率,决定了该物质分子振动的速度,频率越高,速度越大。我们知道,一个运动物体所具有的动能E与其质量M和运动速度有下列关系:
E=Mv2
即,运动物体的动能与其质量成正比,与其速度的平方也成正比。
由于超声波的频率很高,它使所进入的物质分子运动速度,也随之变的很高。根据上式可知,这样高的运动速度,使该物质分子具有很大的动能,这就是超声波拥有巨大能量的缘故。
【超声波的声压特性】
所谓“声压”指的是由于声波的振动而使声场中的物体受到附加压力的强度,单位为公斤/平方厘米,一般可听声的声压非常微小,其数值约为0.000001公斤/平方厘米~0.000002公斤/平方厘米。这公微小的声压,一般是不引起人们的注意的。但是,超声波的声压,一般是很大的。例如,在水中通过一般强度的超声波时,因超声波而产生的附加压力,可以达到好几个大气压。超声波之所以能够产生这样强的声压,可以达到好几个大气压,其根本原
因仍然是由于超声波的频率很高,所以振动时,使高密度分子间的伸拉很快以致使其间形成瞬时的真空与压缩高密度区,产生巨大的压力差。当它的振幅达到一定程度时,超声波拥有的能量十分巨大。
当超声波束通过液体时,由于巨大的超声波声压作用,可以在液体中出现"空化现象"。这种现象所产生的瞬时压力,可以高达几千个,甚至上万个大气压!这么巨大的瞬时压力,使超声波的应用,在许多方面显示出它独特的巨大作用。现在已被普遍应用的超声波清洗,超声波乳化等,都是超声波空化现象的具体运用。
超声波的空化现象是怎样产生的呢?让我们通过观察一个声学实验,来了解空化现象产生的奥妙。
如图1一8所示,在一个盛满水的玻璃容器中,放大一个超声波发生器的声头。
在超声波机末工作之前,该容器中的液体分子受到的只是大气压的压力,液体的分子都很稳定,没有什么变化。当超声波机开始工作后,一般强大的超声波束穿过了整个液体内部。我们知道,当声波通往某种物质时,由于声振动现象,这种压缩和稀疏相互交替的作用,使该物质分子受到的压力产生了变化。例如当超声波振动使水分子压缩时,水分子所受到压力将是大气压加上水分子被压缩时受到的压力,这个变化的压力就是前面我们所谈到的"声压"。当这个巨大的声压使水分子团压缩时,好象水分子团受到了来自四面八方的巨大压力(参看图1一8A)当超声波振动使水分子稀疏时,水分子又受到了向四面八方散开的拉力(参看图1一8B)。对于一般的液体,它能经受得住声压的巨大压力作用,所以在受到压缩力时,水分子团不会发生反常的现象。但是当水分子团受到稀疏作用而受到四面八方的拉力时,它们就支持不住了。在拉力集中的地分,水分子团就会断裂开来,这种断裂作用,最容易发生在存有杂质和气泡的地方,因为这些地方水的强度特别低,根本经不住几倍于大气压力的巨大的拉力作用而发生断裂。这种断裂的结果,使水中会产生许多气泡状的小空腔,这种空腔存在的时间很短,一瞬间,就会闭合起来。小空腔闭合的时侯,会产生巨大的瞬时压力,一般的可高达几千个,甚至上万个大气压。这种巨大的瞬时压力,可以使悬浮在水中的固体表面受到急剧的破坏,超声波的绝妙的清洗作用、乳化作用以及超声波治疗中利用超声波来击碎 脑血栓和胆结石块等,都是运用了超声波的这种巨大的瞬时压力。这种由于超声波在液体中的声压,而使液体分子团破裂而产生无数气体小空腔,由于这些小空腔闭合而产生的瞬时压力的现象,称之为超声波的空化现象。超声波的空化现象,也是超声波的重要特性之一。
J. 超声波探头的分辨率与什么成正比
分辨率主要是和波长。波长越长,分辨率越差,波长越短,分辨率越高,不过跟你的信号采集也很大关系。