㈠ 浓雾天气影响超声波测距
影响的,用是可以用的,具体影响多少挺难量化的
㈡ 温度对超声波传播速度有什么影响如何消除或补偿误差
温度越高超声波传播速度越快,超声波传播的速度还取决于传播介质的密度大小,一般密度越大也会越快,不过这些影响超声波传播速度的因素也会相互影响的,要综合考虑。
㈢ 减小超声波测距误差的方法
超声波测距误差分析和减小方法:
根据超声波测距公式L=C×T,可知测距的误差是由超声波的传播速度误差和测量距离传播的时间误差引起的。
时间误差
当要求测距误差小于1mm时,假设已知超声波速度C=344m/s (20℃室温),忽略声速的传播误差。测距误差s△t<(0.001/344) ≈0.000002907s 即2.907ms。在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1mm的误差。使用的12MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用89C51定时器能保证时间误差在1mm的测量范围内。
超声波传播速度误差
超声波的传播速度受空气的密度所影响,空气的密度越高则超声波的传播速度就越快,而空气的密度又与温度有着密切的关系,如表1所示。
已知超声波速度与温度的关系如下:
式中: r —气体定压热容与定容热容的比值,对空气为1.40,
R —气体普适常量,8.314kg·mol-1·K-1,
M—气体分子量,空气为28.8×10-3kg·mol-1,
T —绝对温度,273K+T℃。
近似公式为:C=C0+0.607×T℃
式中:C0为零度时的声波速度332m/s;
T为实际温度(℃)。
对于超声波测距精度要求达到1mm时,就必须把超声波传播的环境温度考虑进去。例如当温度0℃时超声波速度是332m/s, 30℃时是350m/s,温度变化引起的超声波速度变化为18m/s。若超声波在30℃的环境下以0℃的声速测量100m距离所引起的测量误差将达到5m,测量1m误差将达到5mm。而LM92温度传感器的温度测试分辨率为0.0625℃,-10℃至+85℃准确度为±1.0℃,I2C总线接口。用89C51的通用I/O端口能很容易的模拟I2C总线的读写时序,LM92的高精度温度测量能很好的补偿超声波在不同温度的传播速度。
超声波测距原理
超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。测距的公式表示为:L=C×T
式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。
由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。在精密的液位测量中需要达到毫米级的测量精度。通过分析超声波测距误差产生的原因,提高测量时间差到微秒级,以及用LM92温度传感器进行声波传播速度的补偿后,设计的高精度超声波测距仪能达到毫米级的测量精度。
㈣ 超声波传感器的测量精度受到哪些因素影响
超声波传感器是将超声波信号转换成其他能量信号(通常是电信号)的传感器。超声波传感器利用声波介质对被检测物进行非接触式无磨损的检测。其中超声波是振动频率高于20KHz的机械波。它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。因此超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测尤其是在阳光不透明的固体中。其检测性能几乎不受任何环境条件的影响,包括烟尘环境和雨天。
然而关于影响超声波传感器测量精度的因素却是多个方面的。接下来工釆网小编来具体介绍一下。
首先对于超声波传感器而言,测量精度通常是指模拟输出的测量值的绝对精度。基于回波传输时间,超声波传感器的测量精度依靠数个物理参数。这些参数通常与空气和内部偏差相关。
由于空气温度对超声波传感器的测量精度有很大的影响。当超声波脉冲的回波的传播时间被测量后,传感器用声速计算到目标物的距离。然而,由于空气温度的改变,声速每Kelvin改变0.17%. 几乎所有的倍加福超声波传感器都有一个温度探测器来弥补这种影响。因此这个探测器测量环境温度,传感器修正测量值的相关温度偏移。例如:在室温和较低的温度下,湿度对声速的影响可以忽略不计。然而,在高温下,声速随着湿度的增高而增高。
其次超声波传感器具有温度补偿的特性。那是因为超声波传感器使用回波传输时间的方法原理,即测量超声波脉冲发出和测得回波的时间间隔。超声波传感器通过声速来计算目标物的距离。当声音在空气中传播时,声速在室温下大概是344 m/s。该特性能使模拟量输出型的超声波传感器在一个宽温度范围内获得高达0.6mm的重复精度。其中声速是依靠温度来改变的,每升高一摄氏度改变约17%。因此,大多数的超声波传感器配有温度探测器用于测量距离的修正。这个补偿可以在超声波传感器从-25? C 到+70? C工作范围内执行,并得到±1.5%的测量精度。
除空气温度、温度、温度补偿以外气压、气流、气体类型、外部噪音等因素也会影响超声波传感器的精度,相对于气压而言声速在海平面和3000米海拔高度传播时下降不到1%。指定位置的大气波动可以忽略不计,对声速的影响是难以衡量的。但是气流对超声波测量没有影响。那是因为如果目标物有标准反射板的反射特性,一般气流(风)7kn(50-61.5 km/h)对超声波测量没有影响。当然暴风雨天气或者飓风可能导致不稳定的测量(信号衰减)。目前在关于声速的变化,没有得出常规的结论。这是因为气流方向和气流速度时常改变。另一方面外部噪音也是影响超声波精度的一个因素,由于外部噪音和被测目标物的回波是不同的,通常不会引起误判。如果干扰源与超声波传感器有同样的频率,内部噪音的振幅一定不会超过目标回声的振幅。
无论是超声波传感器本身还是周围环境因素,都会影响距离测量的精确度,这时可以考虑采取一些措施,例如采用超声波传感器 - MB7092
㈤ 超声波传感器测距会受什么因素影响
如果说是测量精度的话,主要是受温度,压力,湿度,气体成分的影响。温度和气体成分是影响最大的。粉尘,蒸汽等会影响测量范围。粉尘蒸汽大的环境,量程会大大的缩短。
㈥ 超声波传感器的测量精度受到哪些因素影响
如果说是测量精度的话,主要是受温度,压力,湿度,气体成分的影响。温度和气体成分是影响最大的。粉尘,蒸汽等会影响测量范围。粉尘蒸汽大的环境,量程会大大的缩短。
对被测物要求:检测时不接触被测物,对被测物颜色。透明度无要求,被测物不能是声音吸收材料(如海绵等),被测物形状不能影响声波的反射,如果被测物是声音吸收材料或被测物形状影响声波的反射,则必须配反射器(可以是机器上任何平坦坚硬的部分)构成反射系统进行检测。
组成部分
常用的超声波传感器由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头发射、一个探头接收)等。
超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。
以上内容参考:网络-超声波传感器
㈦ 超声波测距测速受哪些因素影响
声速:不同物质的声速回与外界的温度、压力、湿度影响,用时需要补偿。
干扰:发射器可能会影响到接受,最近距离不可能太小。
功率:受发射功率影响,测试距离不能太远。
反射物的性质:形状和吸收会影响距离和精度
附近物体:中间物体的反射会造成干扰。
精度:受环境影响和发射频率影响,精度不可能太高。
仅供参考
㈧ 超声波测距是否受风的影响
原则上是受的。
超声波传播速度与介质密度有关,有风的话空气密度肯定会变化,传播速度也是会变的。
此外,风向对超声波传播路径也有一定影响,自然接收端在顺风和逆风时接收超声波强度会有所不同(视传播距离)。
㈨ 超声波测距仪在雨天测距时会有哪些误差急!还有如下图所示的发射电路中五个反向器是什么用途
图在哪边,怎么没看到?超声波也有用在测水位系统,是因为超声波对水也是没有穿透性的,可以返回来。当在下雨时测量时,发送出去的波将碰到雨滴,此时可能会余波反回进行干扰或者是发送出去的波形信号减弱等。。。五个反向器图没看到。。。但是推测是晶体起振的外围或者是驱动电流放大,应该是二者之一,,, 我做过不同方案的超声波距系统,对此有一些了解,图你发上来看一下