❶ 数控机床X轴丝杠新换的线轨新换的还是跑尺寸怎么办
数控机床如果定位不准了,一般都是由于丝杠上出了问题,要么是用久了有磨损间隙大了,要么是丝杠两端的轴承有问题了,轴承的问题也是磨损间隙大了或者调整的不到位或者选型不当。
也有因导轨精度问题引起的定位不准。
数控机床在使用中如果长期处于超负载大负荷状态下工作,丝杠的磨损速度会加快,3-5年就需要更换新丝杠了,而丝杠的品牌和精度也是很重要的选择。
你新换的丝杠如果定位还是不准应该是两端的轴承没调整好,也可能是选型错误。
请专业师傅处理吧,这里的技术含量较高。
❷ 数控机床加工的常见问题和解决方法有什么内容
数控机床能够逻辑地处理具有控制编码或其他符号指令规定的程序控制机床的动作,按图纸要求的形状和尺寸,自动地将零件制作出来,从而实现机床高度的自动化和复合集中化。数控机床的出现较好地解决了复杂、精密、小批量、多品种的零件加工问题。但在过程中容易出现刀具磨损、加工余量过大等问题。下面简单介绍下数控机床加工的常见问题和解决方法:
一、加工平面不平、不光
在数控机床的零件加工当中,对于面的精加工是一个重要的工序,也是经常要做的工序,对于表面的质量要求较高。但在实际的加工当中,有时候会得到不平和不光的平面,不符合要求。
造成这个问题的主要原因是在精加工的时候,进给速度过快,而刀具因为快速移动时造成的振动就容易给加工面留下不平的路径。除此之外,还有一个问题就是在对面的精加工的时候,有时候两个相邻的刀路之间的刀痕会有一定的差异,是刀具切削的方向不一致造成的,要避免这个问题,应该采用全顺铣的加工方式。
二、精加工侧面的接刀痕过于明显
在数控机床的工件加工当中,几乎每一个工件都会要求精铣侧面,而很多时候会出现精铣侧面的接刀痕过于明显的问题,这个是绝对不允许出现的,会严重影响工件的外观。
造成这个问题的主要原因是进、退刀的位置和参数的选择不当以及在深度分层下刀。加工软件有很多种,而不同的加工软件提供的铣削方式也会有差异,但是都会提供下刀的深度选择还有出入刀的参数选择。要想避免上面提高的问题,可以从三个方面进行相关的调整。第一是对进刀点的选取要正确,应该选在最边处,不能选在中间的地方,退刀点也不能再同一个侧边;第二是如果一定要再中间下刀的话,在进退刀的时候,增加一个重叠量;第三是在进行侧面的精加工时,最好采用全切深加工。
三、精铣时的换刀痕迹
在普通的加工和高速加工时,都需要进行刀具的更换,而如果在进行换刀操作的时候不注意对参数进行相关的调整,就会出现明显的痕迹,严重影响工件的外观。
在对底面或者侧面进行精铣时,出现接刀痕是一种常见的现象,很多时候人们都会认为这是不能避免的误差,其实这是完全可以避免的。在工件的加工中,对内凹的拐角处的精加工需要更换小刀具来进行,由于在加工过程中会受力而摆动,就会在拐角处很容易产生接刀的痕迹。
四、精加工后再表面或侧面留下毛刺或批锋
现代的工件加工对于表面的要求越来越高,对于毛刺或者批锋的出现也是不能够接受的,而如果用锉刀对工件进行修正的话也会影响到工件的精度以及尺寸等等,要做到铣削后直接使用,不再需要进行后期的打磨。但在实际的生产当中,仍然会有大量的毛刺以及批锋出现。
而要解决这个问题,在刀具上的使用一定要非常注意,要使用专用的刀具,保证锋利地进行切削。除此之外,也要做好刀路的规划工作,增加二次精光刀路,就是先加工表面,再加工侧面,然后再加工表面,这样就可以确保没有毛刺和批锋,对于不能够进行抛光的工件很有用。
五、对于特殊形状工件的精加工
对于一些特殊形状工件的精加工,软件通常会有拟合误差,有时候如果计算的误差过大的话,就会造成工件的变形,影响外观。要解决这个问题的话,就要从软件里下手,对误差进行合理的控制,既不影响计算的速度,也不会对工件造成变形。
六、刀具磨损严重造成误差
刀具的精度直接影响了工件的质量,而在加工过程中刀具磨损过快会造成工件尺寸的偏差。刀具磨损快产生的原因包括自身材质、工件材质、切削工艺参数、切削油性能等几个方面,如果出现刀具磨损过快的情况应停机后找到根本原因加以排除后再进行加工。
以上就是数控机床设备使用上的一些注意事项,良好的工艺环境和严谨的工艺流程是提高工艺水平的关键。
❸ 数控铣床常见故障及处理方法
数控机床是目前机械零件加工等行业经常用到的机器,无论当它出现任何故障的时候,都不能正常工作,将会耽误生产,因此大家需要及时找到故障的原因及处理方法,所以对于数控机床常见故障处理方法做出了总结,
一、机床不能回零点
原因:
1,原点开关触头被卡死不能动作;
2,原点挡块不能压住原点开关到开关动作位置;
3,原点开关进水导致开关触点生锈接触不好;
4,原点开关线路断开或输入信号源故障;
5,PLC输入点烧坏。
对策: 1,清理被卡住部位,使其活动部位动作顺畅,或者更换行程开关;
2,调整行程开关的安装位置,使零点开关触点能被挡块顺利压到开关动作位置;
3,更换行程开关并做好防水措施;
4,检查开关线路有无断路短路,有无信号源(+24V直流电源) ;
5,更换I/O板上的输入点,做好参数设置,并修改PLC程式。
二、机床正负硬限位报警
正常情况下不会出现此报警,在未回零前操作机床可能会出现,因没回零前系统没有固定机械坐标系而是随意定位,且软限位无效,故操作机床前必须先回零点。
原因: 1,行程开关触头被压住,卡住(过行程);
2,行程开关损坏;
3,行程开关线路出现断路,短路和无信号源;
4,限位挡块不能压住开关触点到动作位置;
5,PLC输入点烧坏。
对策:1,手动或手轮摇离安全位置,或清理开关触头;
2,更换行程开关;
3,检查行程开关线路有无短路,短路有则重新处理。检查信号源(+24V直流电源);
4,调整行程开关安装位置,使之能被正常压上开关触头至动作位置;
5,更换I/O板上的输入点并做好参数设置,修改PLC程式。
❹ 数控机床都有哪些干扰问题,怎么解决
数控机床的抗干扰问题和解决办法:
一、干扰产生的原因:电火花机床利用高频放电对工件腐蚀加工,高频对智能纠错控制器产生干扰。干扰一般是指那些与信号无关的,在信号输入、传输和输出过程中出现的一些不确定的有害的电气瞬变现象。这些瞬变现象会使数控系统中的数据在传输过程中发生变化,增大误差,使局部装置或整个系统出现异常情况,引起故障。干扰源的产生主要有以下几种情况:
①电源干扰:由于电网覆盖范围广,存在多种设备共享一个电网,尤其是电网内部的变化,电源开关操作、雷击浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边,使电压暂变,导致电网电压波动。此外,电源线在传输过程也会产生噪声以及快速瞬变的脉冲串,污染电网。
②辐射干扰:电磁或电场在自然界中无处不在。工作中的电火花穿孔机除了受到电场的作用外还受到了磁场的作用。电火花穿孔机在运行过程中,由于工作环境的恶劣性,不可避免的会受到电磁干扰。
③数字信号和模拟信号间的干扰:电火花穿孔机在工作过程中,由于整套设备涉及到的器件较多,既有AC380V、AC220V交流电信号,又有DV24V、DC5V的各种低压直流电信号。用来传递信号的电缆,在走线过程中,有时会由于模拟信号输出设备或由伺服驱动器或变频器产生的干扰引起误动作发生,影响设备的正常工作;用来传递I/O输入/输出信号的频率受到时钟频率和谐波干扰,加上线路走线不当,使数字信号线和模拟信号线不可避免的会受到外来干扰信号的干扰,各种信号线相互之间也会通过线间耦合等产生干扰。
二、抗干扰的措施:这些措施主要包括屏蔽、隔离、滤波、接地和软件处理等。
①屏蔽技术:屏蔽是目前采用最多也是最有效的一种方式。屏蔽技术切断辐射电磁噪声的传输途径通,常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的场相互隔离,切断电磁辐射信号,以保护被屏蔽体免受干扰,屏蔽分为电场屏蔽、磁场屏蔽及电磁屏蔽。在实际工程应用时,对于电场干扰时,系统中的强电设备金属外壳(伺服驱动器、变频器、驱动器、开关电源、电机等)可靠接地实现主动屏蔽;敏感设备如智能纠错装置等外壳应可靠接地,实现被动屏蔽;强电设备与敏感设备之间距离尽可能远;高电压大电流动力线与信号线应分开走线,选用带屏蔽层的电缆,对于磁场干扰,选用高导磁率的材料,如玻莫合金等,并适当增加屏蔽体的壁厚;用双绞线和屏蔽线,让信号线与接地线或载流回线扭绞在一起,以便使信号与接地或载流回线之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;敏感设备应远离干扰源强电设备变压器等。
②隔离技术:隔离就是用隔离元器件将干扰源隔离,以防干扰窜入设备,保证电火花机床的正常运行。常见的隔离方法有光电隔离、变压器隔离和继电器隔离等方法。
(1)光电隔离:光电隔离能有效地抑制系统噪声,消除接地回路的干扰。在智能纠错系统的输入和输出端,用光耦作接口,对信号及噪声进行隔离;在电机驱动控制电路中,用光耦来把控制电路和马达高压电路隔离开。
(2)变压器隔离是一种用得相当广泛的电源线抗干扰元件,它最基本的作用是实现电路与电路之间的电气隔离,从而解决地线环路电流带来的设备与设备之间的干扰,同时隔离变压器对于抗共模干扰也有一定作用。隔离变压器对瞬变脉冲串和雷击浪涌干扰能起到很好的抑制作用,对于交流信号的传输,一般使用变压器隔离干扰信号的办法。
(3)继电器隔离,继电器的线圈和触点之间没有电气上的联系。因此,可以利用继电器的线圈接受电气信号,而用触点发送和输出信号,从而避免强电和弱电信号之间的直接联系,实现了抗干扰隔离。
③滤波技术:滤波技术是抑制干扰的一种有效措施。滤波器是由集总参数R、L、C构成等效电路。具有分离信号、抑制干扰、阻抗变换与阻抗匹配和延迟信号等功能。采用滤波器可以很好的滤波设备电路中的有害成分,提高设备的可靠性。在数控机床上,为了抑制高频对智能控制装置的干扰。可采用低通滤波器滤除电路中的高频成分,改善电源质量。对于各类加工中心触点或开关,在闭合或断开瞬间因触点抖动所引起的干扰,抑制感性负载在切断电源瞬间所产生的反向势,可以采用阻容滤波来排除,这样可以将电感线圈的磁场释放出来的能力,转化为电容器电场的能量储存起来,以降低能耗。采用L-C滤波器则会降低负载阻抗,从而增加滤波效果,发挥滤波器的作用,降低干扰。
④接地处理:将电路、设备机壳等与作为零电位的一个公共参考点(大地)实现低阻抗的连接,称之谓接地。接地的方式主要有:保护接地、工作接地、屏蔽接地。接地的目的有两个:一是为了减小干扰;二是为了人身安全。为了降低安全事故的发生,安全接地保护接地端子与电气设备的机壳底盘等应实现良好的搭接,做到真正的和大地相连。在数控机床的电柜中,接地排厚度不得低于3mm(铜板),接入大地的接地电阻应小4欧姆;系统内的保护地线,应用尽量粗和短的黄绿双色线连接到接地排上,并且避免构成环路;可以减少与其他设备的相互电磁干扰。为了避免数控机床在工作过程中的共地线阻抗干扰和地环路干扰以及共模电流辐射干扰发生,工作接地极为重要。工作接地方式有浮地、单点接地、多点接地和混合接地。
⑤软件抗干扰:用软件来识别有用信号和干扰信号,并滤除干扰信号的方法,称为软件滤波。一般通过信号时间、空间和属性来判断是有用信号还是干扰信号。当电磁干扰使数控系统的程序跑飞时,看门狗能够帮助系统自动恢复正常运行。
❺ 数控车床出现故障怎么处理
数控车床是一种高精度、高效率的自动化机床。配备多工位刀塔或动力刀塔,机床就具有广泛的工艺性能,可加工直线圆柱、斜线圆柱、圆弧和各种螺纹、槽、蜗杆等复杂工件,具有直线插补、圆弧插补各种补偿功能,并发挥了良好的经济效果。机床在运行过程中,零部件不可避免地会发生不同程度、不同类型的故障,因此熟悉机械故障的特征,掌握数控机床机械故障诊断的常用方法和手段,对确定故障的原因和排除有着重大的作用。下面简单介绍下数控机床故障的排除方法:
一、数控机床故障诊断原则与基本要求
(1)排障原则主要包括以下几个方面:1)充分调查故障现象,首先对操作者的调查,详细询问出现故障的全过程,有些什么现象产生,采取过什么措施等。然后要对现场做细致的勘测;2)查找故障的起因时思路要开阔,无论是集成电器还是和机械、液压,只要有可能引起该故障的原因,都要尽可能全面地列出来。然后进行综合判断和优化选择,确定最有可能产生故障的原因;3)先机械后电气,先静态后动态原则。在故障检修之前,首先应注意排除机械性的故障。再在运行状态下,进行动态的观察、检验和测试,查找故障。而对通电后会发生破坏性故障的,必须先排除危险后方可通电。
(2)故障诊断的基本要求
除了丰富的专业知识外,进行数控故障诊断作业的人员需要具有一定的动手能力和实践操作经验,要求工作人员结合实际经验善于分析思考,通过对故障机床的实际操作分析故障原因,做到以不变应万变达到举一反三的效果。完备的维修工具及诊断仪表必不可少,常用工具如螺丝刀、钳子、扳手、电烙铁等,常用检测仪表如万用表、示波器、信号发生器等。除此以外,工作人员还需要准备好必要的技术资料,如数控机床电器原理图纸、结构布局图纸、数控系统参数说明书、维修说明书、安装、操作、使用说明书等。
二、故障处理的思路
不同数控系统设计思想千差万异,但无论那种系统它们的基本原理和构成都是十分相似的。因此在机床出现故障时,要求维修人员必须有清晰的故障处理的思路:调查故障现场,确认故障现象、故障性质,应充分掌握故障信息,做到“多动脑,慎动手”避免故障的扩大化。根据所掌握故障信息明确故障的复杂程度,并列出故障部位的全部疑点。准备必要的技术资料,比如机床说明书,电气控制原理图等,以此为基础分析故障原因,制定排除故障的方案,要求思路开阔,不应将故障局限于机床的某一部分。
在确定故障排除方案后,利用示万用表、示波器等测量工具,用试验的方法验证并检测故障,逐级定位故障部位,确认出故障属于电气故障还是机械故障,是系统性的还是随机性的,是自身故障还是外部故障等等。故障的排除。通常找到故障原因后问题会马上迎刃而解。
三、故障处理方法
数控机床的数控系统是数控机床的核心所在,它的可靠运行,直接关系到整个设备运行的正常与否。下面总结提炼出一些判断与排除数控机床故障的方法。
(1)直观法。主要采用目测、手摸、通电等方法,维修人员在故障诊断时首先使用的方法是直观检查法。
(2)自诊断功能法。利用数控系统的自诊断功能,给出报警信息,指示故障的大致起因。
(3)交换法。将相同的模块和单元互相交换,观察故障转移的情况,从而快速确定故障的部位。
(4)仪器测量比较法。当系统发生故障后,采用常规电工检测仪器,对故障部分的电压、电源、脉冲信号等进行实测,将正常值与故障时的值相比较,可以分析出故障的原因与所在部位。仪器检查法是使用常规的电工仪表,对相关直流及脉冲信号及各组交、直流电源电压等进行测量,从而找出可能的故障问题。
(5)敲击法。数控系统由各种电路板组成,每块电路板上有很多焊点,任何虚焊或接触不良都可能出现故障可用绝缘物轻轻敲打有虚焊或接触不良的疑点处,若故障出现,则故障很可能就在敲击的部位。
四、故障排除的确认及善后工作
故障排除以后,维修工作还不能算完成,尚需从技术与管理两方面分析故障产生的深层次原因,采取适当措施避免故障再次发生。必要时可根据现场条件使用成熟技术对设备进行改造与改进。
一段时间后,询问一下操作工机床的运行状况,并再次对故障点进行全面检查。最后做维修记录,详细记录维修的整个过程,包括维修时间、更换件型号规格及故障原因分析等。从排除故障过程中发现自己欠缺的知识,制定学习计划,最终充实自己。
以上就是数控机床设备的故障处理方法,专业化的检测流程和维修方法可以快速的解决设备问题。制定严谨的流程、完善的日常维护保养制度、使用专用的零部件和原材料可以有效的避免故障的产生。
❻ 问等离子切割机数控程序出现问题走线跑偏
切割对象不在切割机同一平衡线上,让数控切割机空运行调整调整误差.
❼ 数控机床常见外部故障都有哪些处理解决措施
由于现代的数控系统可变性越来越高,故障率越来越低,很少发生故障。大部分故障都是非系统故障,是由外部原因引起的。
1、现代的数控设备都是机电一体化的产品,结构比较复杂,保护措施完善,自动化程度非常高。有些故障并不是硬件损坏引起的,而是由于操作、调整、处理不当引起的。这类故障在设备使用初期发生的频率较高,这时操作人员和维护人员对设备都不特别熟悉。
例一、一台数控铣床,在刚投入使用的时候,旋转工作台经常出现不旋转的问题,经过对机床工作原理和加工过程进行分析,发现这个问题与分度装置有关,只有分度装置在起始位置时,工作台才能旋转。
例二、另一台数控铣床发生打刀事故,按急停按钮后,换上新刀,但工作台不旋转,通过PLC梯图分析,发现其换刀过程不正确,计算机认为换刀过程没有结束,不能进行其它操作,按正确程序重新换刀后,机床恢复正常。
例三、有几台数控机床,在刚投入使用的时候,有时出现意外情况,操作人员按急停按钮后,将系统断电重新启动,这时机床不回参考点,必须经过一番调整,有时得手工将轴盘到非干涉区。后来吸取教训,按急停按钮后,将操作方式变为手动,松开急停按钮,把机床恢复到正常位置,这时再操作或断电,就不会出现问题。
2、由外部硬件损坏引起的故障
这类故障是数控机床常见故障,一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置等出现问题引起的。有些故障可产生报警,通过报答信息,可查找故障原因。
例一、一台数控磨床,数控系统采用西门子SINUMERIKSYSTEM3,出现故障报警F31“SPINDLECOOLANTCIRCUIT”,指示主轴冷却系统有问题,而检查冷却系统并无问题,查阅PLC梯图,这个故障是由流量检测开关B9.6检测出来的,检查这个开关,发现开关已损坏,更换新的开关,故障消失。
例二、一台采用西门子SINUMERIK810的数控淬火机床,一次出现6014“FAULTLEVELHARDENINGLIQUID”机床不能工作。报警信息指示,淬火液面不够,检查液面已远远超出最低水平,检测液位开关,发现是液位开关出现问题,更换新的开关,故障消除。
有些故障虽有报警信息,但并不能反映故障的根本原因。这时要根据报警信息、故障现象来分析。
例三、一台数控磨床,E轴在回参考点时,E轴旋转但没有找到参考点,而一直运动,直到压到极限开关,NC系统显示报警“EAXISATMAX.TRAVEL”。根据故障现象分析,可能是零点开关有问题,经确认为无触点零点开关损坏,更换新的开关,故障消除。
例四、一台专用的数控铣床,在零件批量加工过程中发生故障,每次都发生在零件已加工完毕,Z轴后移还没到位,这时出现故障,加工程序中断,主轴停转,并显示F97号报警“SPINDLESPEEDNOTOKSTATION2”,指示主轴有问题,检查主轴系统并无问题,其它问题也可导致主轴停转,于是我们用机外编程器监视PLC梯图的运行状态,发现刀具液压卡紧压力检测开关F21.1,在出现故障时,瞬间断开,它的断开表示铣刀卡紧力不够,为安全起见,PLC使主轴停转。经检查发现液压压力不稳,调整液压系统,使之稳定,故障被排除。
还有些故障不产生故障报警,只是动作不能完成,这时就要根据维修经验,机床的工作原理,PLC的运行状态来判断故障。
例五、一台数控机床一次出现故障,负载门关不上,自动加工不能进行,而且无故障显示。这个负载门是由气缸来完成开关的,关闭负载门是PLC输出Q2.0控制电磁阀Y2.0来实现的。用NC系统的PC功能检查PLCQ2.0的状态,其状态为1,但电磁阀却没有得电。原来PLC输出Q2.0通过中间继电器控制电磁阀Y2.0,中间继电器损坏引起这个故障,更换新的继电器,故障被排除。
例六、一台数控机床,工作台不旋转,NC系统没有显示故障报警。根据工作台的动作原理,工作台旋转第一步应将工作台气动浮起,利用机外编程器,跟踪PLC梯图的动态变化,发现PLC这个信号并未发出,根据这个线索继续查看,最后发现反映二、三工位分度头起始位置检测开关I9.7、I10.6动作不同步,导致了工作台不旋转。进一步确认为三工位分度头产生机械错位,调整机械装置,使其与二工位同步,这样使故障消除。
发现问题是解决问题的第一步,而且是最重要的一步。特别是对数控机床的外部故障,有时诊断过程比较复杂,一旦发现问题所在,解决起来比较轻松。对外部故障的诊断,我们总结出两点经验,首先应熟练掌握机床的工作原理和动作顺序。其次要熟练运用厂方提供的PLC梯图,利用NC系统的状态显示功能或用机外编程器监测PLC的运行状态,根据梯图的链锁关系,确定故障点,只要做到以上两点,一般数控机床的外部故障,都会被及时排除。
❽ 怎么排除数控机床的常见故障
数控系统故障维修通常按照:现场故障的诊断与分析、故障的测量维修排除、系统的试车这三大步进行。
1、数控机床故障诊断
在故障诊断时应掌握以下原则:
1.1 先外部后内部
现代数控系统的可靠性越来越高,数控系统本身的故障率越来越低,而大部分故障的发生则是非系统本身原因引起的。由于数控机床是集机械、液压、电气为一体的机床,其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查。尽量避免随意地启封、拆卸,否则会扩大故障,使机床丧失精度、降低性能。系统外部的故障主要是由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。
1.2 先机械后电气
一般来说,机械故障较易发觉,而数控系统及电气故障的诊断难度较大。在故障检修之前,首先注意排除机械性的故障。
1.3 先静态后动态
先在机床断电的静止状态,通过了解、观察、测试、分析,确认通电后不会造成故障扩大、发生事故后,方可给机床通电。在运行状态下,进行动态的观察、检验和测试,查找故障。而对通电后会发生破坏性故障的,必须先排除危险后,方可通电。
1.4 先简单后复杂
当出现多种故障互相交织,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。
2、数控机床的故障诊断技术
数控系统是高技术密集型产品,要想迅速而正确的查明原因并确定其故障的部位,要借助于诊断技术。随着微处理器的不断发展,诊断技术也由简单的诊断朝着多功能的高级诊断或智能化方向发展。诊断能力的强弱也是评价CNC数控系统性能的一项重要指标。目前所使用的各种CNC系统的诊断技术大致可分为以下几类:
2.1 起动诊断
起动诊断是指CNC系统每次从通电开始,系统内部诊断程序就自动执行诊断。诊断的内容为系统中最关键的硬件和系统控制软件,如 CPU、存储器、I/O 等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。否则,将在CRT画面或发光二极管用报警方式指示故障信息。此时起动诊断过程不能结束,系统无法投入运行。
2.2 在线诊断
在线诊断是指通过CNC系统的内装程序,在系统处于正常运行状态时对CNC系统本身及CNC装置相连的各个伺服单元、伺服电机、主轴伺服单元和主轴电动机以及外部设备等进行自动诊断、检查。只要系统不停电,在线诊断就不会停止。
在线诊断一般包括自诊断功能的状态显示有上千条,常以二进制的0、1来显示其状态。对正逻辑来说,0表示断开状态,1表示接通状态,借助状态显示可以判断出故障发生的部位。常用的有接口状态和内部状态显示,如利用I/O接口状态显示,再结合PLC梯形图和强电控制线路图,用推理法和排除法即可判断出故障点所在的真正位置。故障信息大都以报警号形式出现。一般可分为以下几大类:过热报警类;系统报警类;存储报警类;编程/设定类;伺服类;行程开关报警类;印刷线路板间的连接故障类。
2.3 离线诊断
离线诊断是指数控系统出现故障后,数控系统制造厂家或专业维修中心利用专用的诊断软件和测试装置进行停机(或脱机)检查。力求把故障定位到尽可能小的范围内,如缩小到某个功能模块、某部分电路,甚至某个芯片或元件,这种故障定位更为精确。
2.4 现代诊断技术
随着电信技术的发展,IC和微机性价比的提高,近年来国外已将一些新的概念和方法成功地引用到诊断领域。
(1) 通信诊断
也称远程诊断,即利用电话通讯线把带故障的CNC系统和专业维修中心的专用通讯诊断计算机通过连接进行测试诊断。如西门子公司在CNC系统诊断中采用了这种诊断功能,用户把CNC系统中专用的“通信接口”连接在普通电话线上,而两门子公司维修中心的专用通迅诊断计算机的“数据电话”也连接到电话线路上,然后由计算机向 CNC系统发送诊断程序,并将测试数据输回到计算机进行分析并得出结论,随后将诊断结论和处理办法通知用户。
通讯诊断系统还可为用户作定期的预防性诊断,维修人员不必亲临现场,只需按预定的时间对机床作一系列运行检查,在维修中心分析诊断数据,可发现存在的故障隐患,以便及早采取措施。当然,这类CNC系统必须具备远程诊断接口及联网功能。
(2) 自修复系统
就是在系统内设置有备用模块,在CNC系统的软件中装有自修复程序,当该软件在运行时一旦发现某个模块有故障时,系统一方面将故障信息显示在CRT上,同时自动寻找是否有备用模块,如有备用模块,则系统能自动使故障脱机,而接通备用模块使系统能较快地进入正常工作状态。这种方案适用于无人管理的自动化工作场合。
需要注意的是:机床在实际使用中也有些故障既无报警,现象也不是很明显,对这种情况,处理起来就不那样简单了。另外有此设备出现故障后,不但无报警信息,而且缺乏有关维修所需的资料。对这类故障的诊断处理,必须根据具体情况仔细检查,从现象的微小之处进行分析,找出它的真正原因。要查清这类故障的原因,首先必须从各种表面现象中找山它的真实故障现象,再从确认的故障现象中找出发生的原因。全面地分析一个故障现象是决定判断是否正确的重要因素。在查找故障原因前,首先必须了解以下情况:故障是在正常工作中出现还是刚开机就出现的;山现的次数是第一次还是已多次发生;确认机床加工程序的正确性;是否有其他人
3、数控机床的常见故障排除方法
由于数控机床故障比较复杂,同时数控系统自诊断能力还不能对系统的所有部件进行测试,往往是一个报警号指示出众多的故障原因,使人难以入手。下面介绍维修人员任生产实践中常用的排除故障方法。
3.1直观检查法
直观检查法是维修人员根据对故障发生时的各种光、声、味等异常现象的观察,确定故障范围,可将故障范围缩小到一个模块或一块电路板上,然后再进行排除。一般包括:
a.询问:向故障现场人员仔细询问故障产生的过程、故障表象及故障后果等;
b.目视:总体查看机床各部分工作状态是否处于正常状态,各电控装置有无报警指示,局部查看有无保险烧断,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等;
c.触摸:在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、各功率及信号导线的联接状况以及用手摸并轻摇元器件,尤其是大体积的阻容、半导体器件有无松动之感,以此可检查出一些断脚、虚焊、接触不良等故障;
d.通电:是指为了检查有无冒烟、打火,有无异常声音、气味以及触摸有无过热电动机和元件存在而通电,一旦发现立即断电分析。如果存在破坏性故障,必须排除后方可通电。
例:一台数控加工中心在运行一段时间后,CRT显示器突然出现无显示故障,而机床还可继续运转。停机后再开又一切正常。观察发现,设备运转过程中,每当发生振动时故障就可能发生。初步判断是元件接触不良。当检查显示板时,CRT显示突然消失。检查发现有一晶振的两个引脚均虚焊松动。重新焊接后,故障消除。
3.2 初始化复位法
一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障。若系统工作存贮区由于掉电、拨插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。
例:一台数控车床当按下自动运行键,微机拒不执行加工程序,也不显示故障自检提示,显示屏幕处于复位状态(只显示菜单)。有时手动、编辑功能正常,检查用户程序、各种参数完全正确;有时因记忆电池失效,更换记忆电池等,系统显示某一方向尺寸超量或各方向的尺寸都超最(显示尺寸超过机床实斤能加工的最大尺寸或超过系统能够认可的最大尺寸)。排除方法:采用初始化复位法使系统清零复位(一般要用特殊组合健或密码)。3.3 自诊断法
数控系统已具备了较强的自诊断功能,并能随时监视数控系统的硬件和软件的工作状态。利用自诊断功能,能显示出系统与主机之间的接口信息的状态,从而判断出故障发生在机械部分还是数控部分,并显示出故障的大体部位(故障代码)。
a.硬件报警指示:是指包括数控系统、伺服系统在内的各电气装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法;
b.软件报警指示:系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及排除方法。
功能程序测试法是将数控系统的G、M、S、T、F功能用编程法编成一个功能试验程序,并存储在相应的介质上,如纸带和磁带等。在故障诊断时运行这个程序,可快速判定故障发生的可能起因。
功能程序测试法常应用于以下场合:
a.机床加工造成废品而一时无法确定是编程操作不当、还是数控系统故障引起;
b. 数控系统出现随机性故障,一时难以区别是外来干扰,还是系统稳定性个好;
c. 闲置时间较长的数控机床在投入使用前或对数控机床进行定期检修时。
例:一台FANUC9系统的立式铣床在自动加工某一曲线零件时出现爬行现象,表面粗糙度极差。在运行测试程序时,直线、圆弧插补时皆无爬行,由此确定原因在编程方面。对加工程序仔细检查后发现该曲线由很多小段圆弧组成,而编程时又使用了正确定位外检查C61指令之故。将程序中的G61取消,改用G64后,爬行现象消除。
3.5 备件替换法
用好的备件替换诊断出坏的线路板,即在分析出故障大致起因的情况下,维修人员可以利用备用的印刷电路板、集成电路芯片或元器件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。并做相应的初始化起动,使机床迅速投入正常运转。
对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作。尽最大可能缩短故障停机时间,使用这种方法在操作时注意一定要在停电状态下进行,还要仔细检查线路板的版本、型号、各种标记、跨接是否相同,若不一致则不能更换。拆线时应做好标志和记录。
一般不要轻易更换CPU板、存储器板及电地,否则有可能造成程序和机床参数的丢失,使故障扩大。
例:一台采用西门子SINUMERIK SYSTEM 3系统的数控机床,其PLC采川S5—130w/B,一次发生故障时,通过NC系统PC功能输入的R参数,在加工中不起作用,不能更改加上程序中R参数的数值。通过对NC系统工作原理及故障现象的分析,认为PLC的主板有问题,与另一台机床的主板对换后,进一步确定为PLC主板的问题。经专业厂家维修,故障被排除。
3.6 交叉换位法
当发现故障板或者个能确定是否是故障板而又没有备件的情况下,可以将系统中相同或相兼容的两个板互换检查,例如两个坐标的指令板或伺服板的交换,从中判断故障板或故障部位。这种交叉换位法应特别注意,不仅要硬件接线的正确交换,还要将一系列相应的参数交换,否则不仅达不到目的,反而会产生新的故障造成思维混乱,一定要事先考虑周全,设计好软、硬件交换方案,准确无误再行交换检查。
例:一台数控车床出现X向进给正常,Z向进给出现振动、噪音大、精度差,采用手动和手摇脉冲进给时也如此。观察各驱动板指示灯亮度及其变化基本正常,疑是Z轴步进电动机及其引线开路或Z轴机械故障。遂将Z轴电机引线换到X轴电机上,X轴电机运行正常,说明Z轴电动机引线正常;又将X轴电机引线换到Z轴电机上,故障依旧;可以断定是Z轴电动机故障或Z轴机械故障。测量电动机引线,发现一相开路。修复步进电动机,故障排除。
3.7 参数检查法
系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。发生故障时应及时核对系统参数,参数一般存放在磁泡存储器或存放在需由电池保持的 CMOS RAM中,一旦电池电量不足或由于外界的干扰等因素,使个别参数丢失或变化,发生混乱,使机床无法正常工作。此时,可通过核对、修正参数,将故障排除。
例:一台数控铣床上采用了测量循环系统,这一功能要求有一个背景存贮器,调试时发现这一功能无法实现。检查发现确定背景存贮器存在的数据位没有设定,经设定后该功能正常。
又如:一台数控车床数控刀架换对突然出现故障,系统无法自动运行,在手动换刀时,总要过一段时间才能再次换刀。遂对刀补等参数进行检查,发现一个手册上没有说明的参数P20变为20,经查有关资料P20是刀架换刀时间参数,将其清零,故障排除。
有时由于用户程序和参数错误亦可造成故障停机,对此可以采用系统的程序自诊断功能进行检查,改正所有错误,以确保其正常运行。
3.8 测量比较法
CNC系统生产厂在设计印刷线路板时,为了调整和维修方便,在印刷线路板上设计了一些检测端子。维修人员通过测量这些检测端子的电压或波形,可检查有关电路的工作状态是否正常。但利用检测端子进行测量之前,应先熟悉这些检测端子的作用及有关部分的电路或逻辑关系。
3.9 敲击法
当系统故障表现为有时正常有时不正常时,基本可以断定为元器件接触不良或焊点开焊,利用敲击法检查时,当敲击到虚焊或接触不良的故障部位时,故障就会出现。
3.10 局部升温法
数控系统经过长期运行后元件均要老化,性能变坏。当它们尚未完全损坏时,出现的故障就会时有时无。这时用电烙铁或电吹风对被怀疑的元件进行局部加温,会使故障快速出现。操作时,要注意元器件的温度参数等,注意不要损坏好的元器件。
3.11 原理分析法
根据数控系统的组成原理,可从逻辑上分析各点的逻辑电平和特性参数,如电压值和波形,使用仪器仪表进行测量、分析、比较,从而确定故障部位。
除以上常用的故障检测方法之外,还可以采用拔插板法、电压拉偏法、开环检测法等。总之,根据不同的故障现象,可以同时选用几个方法灵活应用、综合分析,才能逐步缩小故障范围,较快地排除故障。
4、数控机床维修后的开机调试
机床的故障排除后通常分两大步进行通电试车:
4.1 自动状态试验
将机床锁住,用编制的程序进行空运转试验,验证程序的正确性,然后放开机床,分别将进给倍率开关、快速超凋开关、主轴速度超调开关进行多种变化,使机床在上述各开关的多种变化的情况下进行充分地运行,后将各超调开关置于100%处,使机床充分运行,观察整机的工作情况是否正常。
4.2 正常加工试验
夹装好工件按正常程序进行加工,加工后检查工件的加工精度是否符合标准要求
5、维修调试后的技术处理
在现场维修结束后,应认真填写维修记录,列出有关必备的备件清单,建立用户档案。对于故障时间、现象、分析诊断方法、采用排故方法,如果有遗留问题应详尽记录,这样不仅使每次故障都有据可查,而且也可以不断积累维修经验。
❾ 数控机床确定走刀路线时应考虑哪些问题
1 注意循环点 不要与未切削工件干涉 起刀点与退刀点 防止撞刀
2 吃刀深度 注意刀具要符合吃刀量
3 主轴转数
4 进给速度
5 注意倒角的正负之分