① 温度有绝对零度,为何人类永远不可能达到这个温度
② 为什么低温有绝对零度,而高温却没有绝对热度原因是什么
因为绝对零度下,一切原子和粒子的运动都会被冻结;而高温不会。我们都知道,宇宙中,一直以来都有着一个“极限低温”。在物理学中,它被命名为“绝对零度”。一般,是零下二百七十三度;这代表着温度的下限;但是,宇宙有极限低温,但好像没有极限高温。零上两百七十三度是极限吗?别开玩笑了,太阳表面就八千摄氏度了;地球内核的温度,更是在三万摄氏度以上。
结语
说到这里,我想起了如今有一项很前沿的技术,叫做“激光制冷”。一般情况下,激光只能用于加热,因为电磁波将能量传递给物体,引起物体内能的增加。但由于温度与原子振动存在直接关系,激光也可以对原子施加一个反向的作用力,将原子分子的振动幅度大大减小,从而实现将其降温的目的。目前的低温极限大多是用这种方法实现的,已经非常接近绝对零度了。
③ 绝对零度是如何算出来的
绝对零度是通过复杂的测算得来的,并且也并非“绝对地”零度。
1、逼近技术温度纪录:
和外太空宇宙背景辐射的 3K 温度做比较,实现玻色-爱因斯坦凝聚的温度170*10^(-9)K 远小于 3K,可知在实验上要实现玻色-爱因斯坦凝聚是非常困难的。要制造出如此极低的温度环境,主要的技术是镭射(激光)冷却和蒸发冷却。
由德国、美国、奥地利等国科学家组成的一个国际科研小组在实验室内创造了仅仅比绝对零度高0.5纳开尔文的温度纪录,而此前的纪录是比绝对零度高3纳开。这是人类历史上首次达到绝对零度以上1纳开以内的极端低温。
这个科研小组在美国《科学》杂志上发表论文介绍说,他们是在利用磁阱技术实现铯原子的玻色-爱因斯坦凝聚态(BEC)的实验过程中创造这一纪录的。参与研究的科学家大卫·普里查德介绍说,将气体冷却到极端接近绝对零度的条件对于精确测量具有重要意义,他们的此次实验成果有助于制造更为精确的原子钟和更为精确地测定重力等。
玻色-爱因斯坦凝聚态是物质的一种奇特的状态,处于这种状态的大量原子的行为像单个粒子一样。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态。要实现物质的该状态一方面需要达到极低的温度,另一方面还要求原子体系处于气态。华裔物理学家朱棣文曾因发明了激光冷却和磁阱技术制冷法而与另两位科学家分享了1997年的诺贝尔物理学奖。
科学家说,他们希望利用新达到的最低温度发现一些物质的新现象,诸如在此低温下原子在同一物体表面的状态、在限定运动通道区域时的运动状态等。因发现了“碱金属原子稀薄气体的玻色-爱因斯坦凝聚”这一新的物质状态而获得了2001年诺贝尔物理学奖的德国科学家评价说,首次达到绝对零度以上1纳开以内的温度是人类历史上的一个里程碑。
慕尼黑路德维格·马克西米利安大学物理学家乌尔里奇·施奈德解释说,从技术上讲,人们能从一条温度曲线上读出一系列温度数,但这些数字表示的只是它所含的粒子处于某个能量状态的概率。通常,大部分粒子的能态处于平均或接近平均水平,只有少数粒子在更高能态上下。理论上,如果这种位置倒转,使多数粒子处于高能态而少数粒子在低能态,温度曲线也会反过来,温度将从正到负,低于绝对零度。2001年诺贝尔物理学奖获得者沃尔夫冈·克特勒也曾证明,在磁场系统中存在负绝对温度。
施奈德和同事用钾原子超冷量子气体实现了这种负绝对零度。他们用激光和磁场将单个原子保持晶格排列。在正温度下,原子之间的斥力使晶格结构保持稳定。然后他们迅速改变磁场,使原子变成相互吸引而不是排斥。施奈德说:“这种突然的转换,使原子还来不及反应,就从它们最稳定的状态,也就是最低能态突然跳到可能达到的最高能态。就像你正在过山谷,突然发现已在山峰。”
在正温度下,这种逆转是不稳定的,原子会向内坍塌。他们也同时调整势阱激光场,增强能量将原子稳定在原位。这样的结果是。这样一来,气体就实现了从高于绝对零度到低于绝对零度的转变,约在负十亿分之几开氏度。
这项研究已经被发表在很多自然科学杂志上,这是人类在物理学上的重大突破,许多科学家表示这将为发现新的物质——暗物质提供了一条路径。
2、1877年,玻尔兹曼发现了宏观的熵与体系的热力学几率的关系S=KlnQ,其中 K为 玻尔兹曼常数。1906年,能斯特提出当温度趋近于绝对零度T→0 时,△S / O = 0 ,即“能斯特热原理”。普朗克在能斯特研究的基础上,利用统计理论指出,各种物质的完美晶体,在绝对零度时,熵为零(S 0 = 0 ),这就是热力学第三定律。
(3)激光制冷和绝对零度有什么关系扩展阅读:
1、最冷之地:
智利天文学家发现了宇宙最冷之地,这个宇宙最冷之地就叫做“回力棒星云”,那里的温度为零下272摄氏度,是目前所知自然界中最寒冷的地方,称为“宇宙冰盒子”。事实上,布莫让星云的温度仅比绝对零度(零下273.15℃)高将近1度。这个“热度”(因为实际上我们谈到的温度总是在绝对零度之上)是作为宇宙起源的大爆炸留存至今的热度,事实上,这是证明大爆炸理论最显著有效的证据之一。
2、真空能量:
在绝对零度下,任何能量都应消失。可就是在绝对零度下,依然有一种能量存在,这就是真空零点能。
真空零点能,因在绝对零度下发现粒子的振动而得名。这是量子真空中所蕴藏着的巨大本底能量。海森堡不确定性原理指出:不可能同时以较高的精确度得知一个粒子的位置和动量。因此,当温度降到绝对零度时粒子必定仍然在振动;否则,如果粒子完全停下来,那它的动量和位置就可以同时精确的测知,而这是违反测不准原理的。这种粒子在绝对零度时的振动(零点振动)所具有的能量就是零点能。
量子真空是没有任何实物粒子的物质状态,其场的总能量处于最低,这是一切物质运动及能量场的最初始状态,它的温度自然处于绝对零度。这样的状态具有无限变化的潜在能力。零点能就是由(量子真空中)虚粒子,不断产生的一对反粒子的出现和湮灭产生的。据推测,量子真空中,每立方厘米包含的能量密度有10^13焦耳。
从理论上看,真空能量以粒子的形态出现,并不断以微小的规模形成和消失。真空中充满着几乎各种波长的粒子,但卡西米尔认为,如果使两个不带电的金属薄盘紧紧靠在一起,较长的波长就会被排除出去。接着,金属盘外的其他波就会产生一种往往使它们相互聚拢的力,金属盘越靠近,两者之间的吸引力就越强。1996 年,物理学家首次对这种所谓的卡西米尔效应进行了测定。这是证明真空零点能存在的确凿证据。
④ 激光制冷与绝对零度有什么关系
不管你往什么地方看,到处都有激光的痕迹。激光束能准确地进行外科手术,就像小小的粒子加速器一样干净利落地工作。它们能在实验室再生太阳表面的白热状态。在科技日新月异的当今,人们已经可以通过高科技的手段利用激光能把材料中的热量逐渐排出,直至这些材料像冰冻的冥王星一样冷。美国的科学家已经研制出激光冷却器的样机,他们希望能把这些冷却器放到卫星上使用。
从20世纪七八十年代以来,一种叫做多普勒冷却的技术一直在用激光冷却材料,利用光子使原子减速。能量从原子到光子的转换能使原子冷却到绝对温度零上百万分之一度弱,但是只是在极小的尺寸上才能做到这一点。
激光制冷的基本原理
激光为什么能制冷呢?原来,物体的原子总是在不停地做无规则运动,这实际上就是表示物体温度高低的热运动,即原子运动越激烈,物体温度越高;反之,温度就越低。所以,只要降低原子运动速度,就能降低物体温度。激光制冷的原理就是利用大量的光子阻碍原子运动,使其减速,从而降低了物体温度。
物体原子运动的速度通常为500米/秒左右。长期以来,科学家一直在寻找使原子相对静止的方法。朱棣文采用三束相互垂直的激光,从各个方面对原子进行照射,使原子陷于光子海洋中,运动不断受到阻碍而减速。激光的这种作用被形象地称为“光学粘胶”。在试验中,被“粘”住的原子可以降到几乎接近绝对零度的低温。
激光制冷的技术回顾
20世纪七八十年代,物理学家掌握了如何用激光将原子冷却到非常接近绝对零度的低温。那个时期最重要的三篇文章都发表在《物理学评论快报》上,它们标志着这项技术发展过程中的关键。1978年,研究者们费尽九牛二虎之力才把离子冷却到40开尔文以下,但是仅仅十年之后中性原子就可以被冷却到43微开了。但是冷却的基本原理并没有变:用激光作用在原子上使之减速。这项技术的改进使得物理学家们能够制备出一种称为玻色—爱因斯坦凝聚的量子态物质以及现代高精度的原子钟,有两项诺贝尔奖与这一技术有关。
冷却原子最初是为了降低它们的热运动速度,以便精确地测量原子光谱,后来则是为了改进原子钟。早在1978年维固兰德及其在国家标准技术局的同事们就按照文献中提出的理论方案成功地用激光冷却了镁离子。
正如这个小组在《物理学评论杂志》的文章中所描述的那样,他们将离子限制在电磁势阱中,并用频率稍低于离子共振频率的激光轰击俘获的离子。在静止状态时,离子吸收频率等于其共振频率的光子;当离子迎着激光照射的方向运动时,由于多普勒效应激光的频率会变大,当激光频率达到离子共振频率的时候,离子就会吸收光子。由于光子和离子的动量方向相反,离子吸收光子之后其运动速度会降低从而冷却,冷却效应会一直持续下去直到被激光的加热效应所平衡,加热效应在有激光的时候总是存在的。在后来的几年中,加热效应——它源自原子每次随机地在各个方向辐射和吸收光子时产生的反冲效应——最终将对所谓的多普勒冷却技术能够将物质冷却到更低的温度给出难以突破的限制。
在波士顿的威廉·菲利普斯怀着极大的兴趣读了维固兰德等人的实验文章以及一篇理论文章后,他回忆说:“冷却离子的想法使我思考是否有可能冷却中性原子。”
1982年,菲利普斯和来自纽约石溪大学的Harold Metcalf发表了关于用激光冷却中性原子的第一篇文章。他们把钠原子送入一个长约60厘米、开口处宽而越往前越窄的磁场中。钠原子通过磁场的时候迎头碰上频率与原子共振频率稍有差异的激光束,多普勒冷却效应使得原子束中粒子的运动速度被限制在较小的一个范围内。激光束同时也使得原子束整体运动的速度减慢。在减速的过程中,不断改变的磁场造成原子的共振频率也不断改变,从而使得在很长的一个距离上减速和冷却效应能够一直保持,最终的速度将达到仅为原有速度的40%。这一现在被称为塞曼减速仪的装置已经成为原子束减速的标准工具。
激光冷却技术不断地被改进,一直到80年代末,研究者们认为他们已经达到了可能达到的最低温度——这是根据多普勒冷却理论计算得到的——对于钠原子而言这一温度极限是240微开。但是在1988年,一个由菲利普斯领导的小组偶然间发现在这之前三年发展出来的一项技术可以突破多普勒极限。他们用三束相互垂直的激光束对来冷却钠原子,而且激光频率和其他实验室中使用的激光频率略有不同。他们发现,使用几项新的温度测量技术得到的结果显示钠原子的温度只有43微开。理论物理学家马上从理论上对这一出乎意料的冷却机制给予了解释,这一解释考虑了更多的原子态以及激光的极化效应;相比之下之前的冷却模型就非常简单化了。
在新理论的指导下,实验物理学家们获得了更低的温度并发展出了更多的冷却技术。菲利普斯的亚多普勒冷却技术(Sub?Doppler Cooling)是1995年制备出玻色—爱因斯坦凝聚——在这种新的凝聚态中,气态原子全部处于可能的最低能量状态上——的前奏。
原子钟技术同样从这一技术中受益。最新一代的原子钟使用的技术就直接脱胎于菲利普斯及其他人于20世纪80年代发展出来的技术。菲利普斯因为发展激光冷却技术而分享了1997年的诺贝尔奖;2001年的诺贝尔奖则授予首次实现玻色—爱因斯坦凝聚的物理学家。
多普勒效应
多普勒效应是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒而命名的,他于1842年首先提出了这一理论。
多普勒效应指出:物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高;当运动在波源后面时,会产生相反的效应。波长变得较长,频率变得较低。波源的速度越高,所产生的效应越大。根据波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度。
⑤ 激光冷却原子原理
激光冷却
只说原理 激光冷却法的基本原理是 光压 在光的传播路径上会对物质产生一定压力 称之为 光压 在进行冷却的时候用多束激光从不同方向照射目标体 使其粒子受到光压的作用 以阻止其热振动 以打到冷却的效果 激光冷却法是现在最先进的冷却方法之一 可以打到非常接近绝对零度的超低温
众所周知,激光是高功率的光束,它能产生高温,因而有激光手术、激光焊接等应用。但是激光居然还能用来冷却,而且可以冷却到绝对温度百万分之一度以下,却似乎有点不太好理解。
激光冷却涉及到多个物理原理,概括起来主要有光的多普勒效应、原子能级量子化、光具有动量。另外,激光的高度单色性和可调激光技术也非常重要。
光的多普勒效应是指,如果你迎着光源的方向运动,观察到光的频率将会增加;如果背离光源方向运动,观察到的光的频率将会降低。
原子可以吸收电磁辐射的能量,使其本身的能量升高;也可以释放出电磁辐射,同时自身的能量降低。原子的能级量子化,是指原子只能吸收和放出某些特定频率的电磁波。按量子理论,电磁波的能量只能以某种不可分割的单位--能量子--与别的物质相作用。而每一份能量子所含的能量正比电磁波的频率,所以,只吸收和释放某些特定频率的电磁波,就意味着原子的能量只能取某些特定的值,故称为能级量子化。
光与其它实物粒子一样,也具有动量。当一个原子吸收一份电磁波的能量子(即光子)时,它同时也获得了一定的动量。光的动量与光的波长成反比,方向与光的传播方向相一致。
现在假设某种原子只吸收频率为f0的电磁波。如果我们把激光的频率调在略小于f0的频率上(可调激光技术可以让我们精确地调节所需激光的频率),并把这样一束激光射在由那种原子组成的样品上,将会发生什么现象呢?
我们知道,在高于绝对零度的任何温度下,组成样品的原子都在作无规则的热运动。当其中某个原子的运动方向指向激光的光源时,由于多普勒效应,在这个原子看来激光的频率会略高一些。因为我们把激光的频率调在略低于f0,多普勒效应可以使得飞向光源方向的原子看到的激光频率正好等于f0。这样,这个原子就有可能吸收激光的能量。在它吸收能量时,它同时也获得了动量。由于激光传播的方向与原子运动的方向相反,获得的动量将使原子的运动速度变慢。
如果另一个原子的运动方向背离激光的光源时,由于多普勒效应,这个原子看到的激光频率将降低,这样将更加远离它能吸收的电磁波的频率,所以这个原子不会吸收激光的能量,也不会从激光那里获得使它加速的动量。
如果我们多设置几个激光源,从多个方向照射那个样品。那么按上面的分析,无论样品的原子往哪个方向运动,它都只吸收迎面而来的激光,因而其运动速度总是被降低。这些原子就好象处在粘稠的糖浆中,它的运动一直受到阻挠,直到几乎完全停止。所以激光冷却装置又被称为“光学糖浆”。
这样,在激光的照射下,组成样品的原子的热运动速度不断降低,它的温度也就不断地降低。那么用这种办法有没有可能达到绝对零度呢?答案是否定的。因为样品原子在吸收了光子之后,其自身能级将升高,因而并不稳定。它会再次释放光子,使自己处于更稳定的状态。释放光子时,它也会失去一部分动量,从而产生相反方向的加速。释放光子的方向是随机的,所以在长期平均来看,它并不产生净的加速。但是它毕竟使原子获得了随机的瞬间速度,这本身也是一种热运动,所以要达到绝对零度是不可能的。只是这种热运动的幅度很小,其对应的温度对大多数原子来讲在千分之一开以下。
激光制冷
大家都知道激光有亮度高的特点,利用这个特点可以在极短的时间内在极小的范围内使被激光照射的物体接受到极高的能量.用这种技术可以进行金属焊接和施行人体手术等.而现在科学家们还能利用激光制冷,并把研究对象的温度降低到只有几微开(10-6K),已经非常接近绝对零度了.
激光冷却技术的原理可以用右图说明.图中激光束a和激光束b相向传播,光的频率相同,都略低于原子吸收光谱线的中心频率,即比原子的共振吸收频率低一些.现在考虑一个往右方运动的原子A,这个原子是迎着激光束b运动的,根据多普勒效应,这个原子感受到的激光束b的频率升高,即激光束b的频率进一步接近了原子的共振吸收峰值的位置.原子从激光束b吸收光子的几率增大.这个原子的运动方向和激光束a的传播方向相同,所以它感受到激光束a的频率减小,根据多普勒效应,这个原子感受到的激光束a的频率降低,即激光束a的频率进一步远离了原子的共振吸收峰值的位置,原子从激光束a吸收光子的几率减小.着意味着原子A将受到把它往左推的作用力,阻止它往右运动,即原子A的速度减慢.同样,图中向左运动的原子B将受到激光束a的推力,阻止它向左运动,运动速度也减慢.那么,用上下,左右,前后三对这样的激光束,就可以让朝各个方向运动的原子都减慢运动速度.而物体的温度正是由物体分子平均动能的标志,所以这种方法能够达到制冷的目的.目前,用这个办法已经可以把原子冷却到微开.
⑥ 光被绝对零度冻住后会变成一道波浪还是一根棍子
科幻片《幽冥》剧照
最后来简单介绍下概念很硬核、剧情很紧凑、观赏性很高关于玻色-爱因斯坦凝聚态的科幻片《幽冥》,说的是被某种实验困在在玻色-爱因斯坦凝聚态、半生半死之间的“人形生物”与三角洲特种部队之间战争的反战电影,整体来说作为科幻片来看是不错的,但请勿和现实中的玻色-爱因斯坦凝聚态联系起来,因为凡是电影很难经得起科学逻辑推敲的,尽情欣赏即可。
⑦ 绝对零度为何达不到,激光冷却是怎么回事
你问的是我硕士的论文哦。要回答这个问题,首先要知道温度是个宏观感念。它指的是一个物体宏观的一个属性。宏观的温度在微观上指的是粒子运动的快慢。也就是说,组成物质的粒子运动越快,那这个物体的温度就高,反之就越低。
物体是有很多很多个粒子组成,谁能保证每个粒子都不运动。粒子都不运动的时候,叫做绝对零度。既然不能保证每个粒子都不运动,那么绝对零度就达不到。
激光冷却有很多方法:多普勒冷却,蒸发冷却,速度选择相干布局捕陷等。但所有的方法只有一个目的,就是把激光做成镊子,物理学中叫做光学镊子。用这个镊子夹住微粒不让它动。越来越多的粒子被夹住,那么物体的温度就降下来了。这就是激光冷却。
⑧ 激光是怎样制冷和发热的原理是什么
一、激光制冷原理:
激光的制冷原理就是要降低物体中分子的热运动。物体的温度与分子的热运动有关,分子运动月剧烈,则物体的温度就越高;反之,分子的热运动越慢,物体的温度就越低。激光是具有高能量的,,因为它发出的光粒子都是往同一个方向的,所以这些粒子相当的集中(即单位空间内所含有的粒子数多),当有激光射入物体内时,由于激光的粒子相当多,使得物体内的微粒相当拥挤,它们几乎不能像原来一样乱到处"动弹"剧烈运动。从而降低了分子的热运动,能量从原子到光子的转换能使原子冷却到绝对温度零上的百万分之一度弱,物体的温度也就降低了。
现在美国已经研制出了激光冷却机的样机,就是想利用光子使原子减速,达到冷却的目的。很多科学家都已经研制出了一些有成效的激光制冷机器。激光的冷却器是大有前途的,这也是人类科技进步所无法抵挡的。
二、激光发热原理 :
高频加热多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。高频加热设备,即对工件进行高频加热,以进行表面淬火的设备。
工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000ºC,而心部温度升高很小。
高频加热频率的选择:根据热处理及加热深度的要求选择频率,频率越高加热的深度越浅。
高频(10KHZ以上)加热的深度为0.5-2.5mm,一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。
中频(1~10KHZ)加热深度为2-10mm,一般用于直径大的轴类和大中模数的齿轮加热。
工频(50HZ)加热淬硬层深度为10-20mm,一般用于较大尺寸零件的透热,大直径零件(直径Ø300mm以上,如轧辊等)的表面淬火。高频加热表面淬火具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小等优点,所以激光加热设备在金属表面热处理中得到了广泛应用。激光加热设备是产生特定频率感应电流,进行高频加热及表面淬火处理的设备。
⑨ 为什么宇宙最低温度是300度,这一定有重大物理规律吗
这里有重大的物理规律,那就是任何物体的运动不可能是负数。根据不确定性原理,任何物体都不可能绝对静止。
首先来看一下温度的定义。
所以,物体分子平均动能越大,温度越高,物体分子平均动能越小,温度越低。
也就是物体内所有粒子运动的越剧烈,物体温度越高,反之则越低。 那么这个运动程度就有个底线,那就是静止不动。一个物体内所有粒子完全静止,它的温度就是-273.15度左右。 这也是所谓的 绝对零度 。
为什么不是-300度或者其它温度呢?
因为温度是我们人类所定义的,在1个标准大气压下,冰水混合物定义为0度,水的沸点定为100度。
所以这样换算下来之后,绝对零度是-27315度左右,这个数字并没有神奇之处,只是物体所有粒子静止时定义的温度。
由于测不准原理的存在,一个粒子不可能绝对静止,所以绝对零度永远不可能达到。
目前人类制造的最低温度只比绝对零度高0.5纳开尔文左右,已经将要迫使一个粒子静止了。
还好有不确定原理的存在,我们不能完全冻结一个粒子,宇宙在微观尺度上还保留着自己的神秘。
宇宙不止有最低温度,还有最高温度,那就是宇宙大爆炸的温度,约为10000亿亿亿度。
为什么宇宙最低温度是-273度左右?为什么不是-300度,这一定有重大物理规律吗?
这个话题就像光速为什么不是300000米/秒一样,其实我们也可以将光速折腾到这个数字的,我们只要修改度量衡中的1M长度为: 299792458/300000000即可,光速立马就从299792458米升格为整30万米/秒,同理,我们将摄氏温标重新定义,那么绝对零度立马就从-273 变成-300 ,当然大家肯定不服气,这不是耍流氓嘛,没关系,咱简单来了解下温度我们认识温度的 历史 。
温度的 历史 ,分子运动论的来历
安德斯·摄尔修斯
布朗运动
第一代开尔文勋爵:威廉·汤姆森
上文是温度的本质-分子热运动的流水账,从这个过程中,我们了解了摄氏温标的由来,以及绝对零度的概念,还有分子运动论的起源,当然另一层含义是绝对零度是测算出来的。
如何达到绝对零度?前文我们了解了温度是由微观粒子运动引起的。那么何为温度高低呢?微观粒子运动运动越剧烈表示温度越高,相反则温度越低,那么问题来了,我们是不是能制造一个不运动的微观粒子呢?当然目的是制造最低温度?
当然理论上是可以的,但事实上却无法达到,因为没有一种手段可以让微观粒子的运动完全停止。现代能制造最低温度的设备是NASA的冷原子云实验室(CAL),一个类似冰箱大小的设备,于2018年5月21日被送到了国际空间站,在微重力的条件下展开激光制冷的实验。
激光制冷:利用激光的多普勒制冷方式,每次以频移欺骗原子,受激发的原子跌落基态会释放吸收的能量,这个释放能量大于吸收能量,每次操作都会让原子失去能量,从而达到制冷的目的。
但即使如此,激光制冷仍然只能达到-273.1499999999 ,但距离绝对零度仍然有一步之遥!
总结我们了解了温度的 历史 与接近绝对零度的一种方式,为什么绝对零度是-273.15 这是由一个大气压下冰水混合所定义的0 的时候所决定的,以此时的0 为标准,我们通过此时的微观粒子运动剧烈程度计算出运动静止时的温度是-273.15 ,如果要重新定义绝对零度为-300 ,这完全没有问题,毕竟微观粒子停止运动时的标定是不会变的,取什么名字,那是国际计量委员会的问题。
绝对零度,是热力学的最低温度,但只是理论上的下限值。热力学温标的单位是开尔文(K),绝对零度就是开尔文温度标(简称开氏温度标,记为K)定义的零点。0K约等于摄氏温标零下273.15摄氏度,也就是0开氏度,在此温度下,物体分子没有动能和势能,动势能为0,故此时物体内能为0。
那为什么宇宙最低温度也就是绝对零度是-273度左右?为什么不是-300度呢?绝对零度是根据理想气体所遵循的规律也就是理想气体状态方程用外推的方法得到的。用这样的方法,当温度降低到-273.15 时,气体的体积将减小到零。
所以这是一个根据理论公式通过计算得到的数值,由德国、美国、奥地利等国科学家组成的一个国际科研小组在实验室内创造了仅仅比绝对零度高0.5纳开尔文的温度纪录,而此前的纪录是比绝对零度高3纳开。这是人类 历史 上首次达到绝对零度以上1纳开以内的极端低温。
(开尔文与摄氏度的换算关系为: 开尔文(K)=273.15+摄氏度(T),1纳开等于十亿分之一开尔文)
智利天文学家发现了宇宙最冷之地,这个宇宙最冷之地就叫做“回力棒星云”,那里的温度为零下272摄氏度,是目前所知自然界中最寒冷的地方,称为“宇宙冰盒子”。
因为宇宙绝对不可能达到绝对零度,所以1912年,1912 年, 能斯特根据他所提出的热定理推论, 得出:绝对零度不可能达到。叙述成定律的形式为:“ 不可能应用有限个方法使物系的温度达到绝对零度,也就是热力学第三定律。你也可以通过热力学第二定律也就是熵增定律推出:
⑩ 人类能创造5.5万亿度高温,却无法突破绝对零度,原因为何
2020年4月2日,位于合肥的“东方超环”可控核聚变实验装置,首次实现了“1亿摄氏度情况下,稳定运行10秒”
温度的上限和下限,真空光速,核聚变质能转化率,这些客观存在的条条框框”,是我们宇宙的“天花板”,人类物理学只能在天花板下大展拳脚,而无法打破它们。