⑴ 超声波的特性
1、超声波在传播时,方向性强,能量易于集中;
2、超声波能在各种不同媒质中传播,且可传播足够远的距离;
3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗;
4、 超声波可在气体、液体、固体、固熔体等介质中有效传播;
5、 超声波可传递很强的能量;
6、 超声波会产生反射、干涉、叠加和共振现象。
(1)超声波和气体有什么区别扩展阅读:
超声效应:
当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生一系列力学的、热学的、电磁学的和化学的超声效应,包括以下2种效应:
1、机械效应:超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。
超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化。
2、热效应:由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
参考资料来源:网络-超声波
⑵ 超声波在固体中的传播与在空气中有什么主要区别
一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小.
⑶ 超声波有什么特点
超声波特点
1)超声波在传播时,波长短,方向性强,能量易于集中。
2)超声波能在各种不同媒质中传播,且可传播足够远的距离。
3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。
4)超声波可在气体、液体、固体、固熔体等介质中有效传播。
5)超声波可传递能量。
6)超声波会产生反射、干涉、叠加和共振现象。
超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等)用作诊断;超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响、改变以致破坏后者的状态、性质及结构用作治疗。
(3)超声波和气体有什么区别扩展阅读
超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。
超声成像是利用超声波呈现不透明物内部形象的技术。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息,经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。
参考资料来源:网络-超声波
⑷ 什么是超声波有什么特点
由于超声波所具有的能量很大,就有可能使物质分子产生显诸的声压作用、例如当水中通过一般强度的超声波时,产生的附加压力可以达到好几个大气压力。液体中存起着如此巨大的声压作用,就
会引起值得注意的现象。当超声波振动使液体分子压缩时,好象分子受到来直四面八方的压力;当超声波振动使液体分子稀疏时,好象受到向外散开的拉力。
对于液体,它们比较受得住附加压力的作用,所以在受到压缩力的时候;不大会产生反常情形。但是在拉力的作用下,液体就会支持不了,在拉力集中的
地方,液体就会断裂开来,这种断裂作用特别容易发生在液体中存在杂质或气泡的地方,因为这些地方液体的强度特别
低,也就特别经受不起几倍于大气压力的拉力作用。由于发生断裂的结果,液体中会产生许多气泡状的小空腔,这种空泡存在的时间很短,一瞬时就会闭合起来。空腔闭合的时候会
产生很大的瞬时压力,一般可以达到几千甚至几万个大气压力。液体在这种强大的瞬时压力作用下,温度会骤然增高。
断裂作用所引起的互大瞬时压力,可以使浮悬在液体中
的固体表面受到急剧破坏。我们常称之为空化现象
⑸ 超声波是什么
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
网友见解:超声波是高于2000Hz的声波,人听不到,但自然界中却有许多动物在利用它生存。
网友见解: 超声波是频率超过人能听到的最高频20000赫兹的声波。超声波有两大特点。一是波长短,具有良好的定向性,作近似直线的传播,并能反射回来,在固体和液体内衰减比电磁波小;二是功率大,能量集中,携带的能量比一般的声波大得多,可形成高强度、剧烈振动,产生机械、光、热、电、化学和生物等各种效应。由于这两大特点,超声波在现代科技广泛应用,在医学、农业、军事等领域都有广泛的用途。
比如超声波在工业上有一个重要的用途,就是测量物体的温度。科学家发现,超声波有这样一个特性:在气体、液体、固体三种不同形态的物质中传播速度和这些物质的温度有关,温度不同,传播速度也不同。根据这个特性,科学家们制造声学温度计。声学温度计通过测量声波的传播速度来了解被测物的温度,可以测量高达17000℃ 的温度,也可以测量接近绝对零度(即-273.16℃)的低温。声学温度计还有一个突出的优点,就是在测温的时候不必和被测物直接接触。因此,在一般温度计不能发挥作用的地方,例如测量火箭喷射的高温气体和火红的钢水,声学温度计可以大显身手。
⑹ 超声波的特点
超声波在介质中的反射、折射、衍射、散射等传播规律,与(可闻)声波的规律并没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与(可闻)声波比较,超声波具有许多奇异特性:
1、超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,但它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。因此,超声波在传播时,方向性强,能量易于集中。
2、超声波能在各种不同介质中传播,可传播足够远的距离。
3、超声与传声介质的相互作用适中,易于携带有关传声介质状态的信息(诊断或对传声介质产生效应)。超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的介质发生相互作用,影响、改变以致破坏后者的状态、性质及结构(用作治疗)。
超声波在传播过程中与媒质相互作用,相位和幅度发生变化,可以使媒质的状态、组成、结构、功能和性质等发生变化。这类变化称之为超声效应。超声波与媒质的相互作用可分为热机制、机械力学机制和空化机制。
(1) 热机制:超声波在媒质中传播时,其振动能量不断被媒质吸收转变为热量而使媒质温度升高。这种使媒质温度升高的效应称为超声的热机制。
(2) 机械力学机制:当频率较低,吸收系数较小,超声的作用时间很短时,超声效应的产生并不伴随有明显的热效应。这时,超声效应可归结为机械力学机制,即超声效应来源于表征声场力学量的贡献。超声波也是一种机械能量的传播形式,波动过程中的力学量如原点位移、振动速度、加速度及声压等参数可以表述超声效应。
(3) 空化机制:超声波声化学效应的主要机制之一是声空化(包括气泡的形成、生长和崩裂等过程)。其现象包括两个方面,即强超声在液体中产生气泡和气泡在强超声作用下的特殊运动。
超声波是一种高频机械波,具有能量集中、穿透力强等特点。超声波由一系列疏密相间的纵波构成,并通过液体介质向四周传播。当声能足够高时,在疏松的半周期内,液相分子间的吸引力被打破,形成空化核。空化核的寿命约为0.1μs,它在爆炸的瞬间可以产生大约 4000-6000 K 和100MPa的局部高温高压环境,并产生速度约110m/s具有强烈冲击力的微射流,这种现象称为超声空化。
⑺ 氧气雾化吸入与超声雾化的区别有哪些
氧气雾化吸入与超声雾化的区别:
1、超声雾化吸入气的湿度往往过高,降低了吸入氧的浓度,可使动脉血氧分压下降,感到胸闷气急加重。。
2、氧气雾化吸入以O2为气源,氧流量6~10L/min,符合呼吸道感染性疾病的氧疗原则,氧气雾化吸入有雾化药液浓度高。
⑻ 超声波具有怎样的特点
1、超声波在传播时,方向性强,能量易于集中。
2、超声波能在各种不同媒质中传播,且可传播足够远的距离。
3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。
4、超声波可在气体、液体、固体、固熔体等介质中有效传播。
5、超声波可传递很强的能量。
6、超声波会产生反射、干涉、叠加和共振现象。
(8)超声波和气体有什么区别扩展阅读
超声波检查对人体无害
超声波是一种高频率的声波,它没有放射性,对人体安全、无害,应用于全身各器官系统以及用于产检,对孕妇和胎儿也是非常安全的。在检查时,医生会为患者涂上一层黏黏的东西,这种液体叫做耦合剂,目的是使探头与皮肤之间更好地接触,有利于声波的传导并提高成像质量。耦合剂对人体无毒、无害,检查后擦净或用温水清洗就可以了,不用担心。
参考资料来源:网络-超声波
参考资料来源:人民网-超声检查对人体有害吗?
⑼ 高频声波和超声波的区别是什么
1、频率不同
(1)超声波:当声波的振动频率大于20000Hz时,人耳无法听到。超声波因其频率下限大约等于人的听觉上限而得名。因此,我们把频率高于20000赫兹的声波称为“超声波”。
(2)高频声波:声波的频率是指波列中质点在单位时间内振动的次数。以赫兹(Hz)为单位测量,描述每秒周期数。人耳朵能听到的声波频率为20~20000Hz。
2、作用不同
(1)超声波:超声检验,超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。
(2)高频波:在电子技术领域中高频波在无线电技术中定义高频波是频带由3MHz到30MHz的无线电波。HF多数是用作民用电台广播及短波广播。其对于电子仪器所发出的电波抵抗力较弱,因此经常受到干扰。高频波常用于民用电台广播及短波广播和hf 远程雷达。
3、应用领域不同
(1)超声波:超声处理,利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
(2)高频波:在不同领域中都会存在,如量子力学、声波、光波、弹性波和电磁波领域中具有广泛的应用。
(9)超声波和气体有什么区别扩展阅读
超声波的特点:
1、超声波会产生反射、干涉、叠加和共振现象。
2、 超声波可在气体、液体、固体、固熔体等介质中有效传播。
3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。