A. 数控机床维护检修有什么概念简介
数控机床是数字控制机床()的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,用代码化的数字表示,通过信息载体输入数控装置。经运算处理由数控装置发出各种控制信号,控制机床的动作,按图纸要求的形状和尺寸,自动地将零件加工出来。数控机床较好地解决了复杂、精密、小批量、多品种的零件加工问题,是一种柔性的、高效能的自动化机床,代表了现代机床控制技术的发展方向,是一种典型的机电一体化产品。
数控机床维护检修:
延长元器件的寿命和零部件的磨损周期,预防各种故障,提高数控机床的平均无故障工作时间和使用寿命。
数控机床使用注意:
1、数控机床的使用环境:对于数控机床最好使其置于有恒温的环境和远离震动较大的设备(如冲床)和有电磁干扰的设备;
2、电源要求;
3、数控机床应有操作规程:进行定期的维护、保养,出现故障注意记录保护现场等;
4、数控机床不宜长期封存,长期会导致储存系统故障,数据的丢失;
5、注意培训和配备操作人员、维修人员及编程人员。
数控机床维护章程:
一、数控系统的维护:
1、严格遵守操作规程和日常维护制度。
2、防止灰尘进入数控装置内:漂浮的灰尘和金属粉末容易引起元器件间绝缘电阻下降,从而出现故障甚至损坏元器件。
3、定时清扫数控柜的散热通风系统。
4、经常监视数控系统的电网电压:电网电压范围在额定值的85%~110%。
5、定期更换存储器用电池。
6、数控系统长期不用时的维护:经常给数控系统通电或使数控机床运行温机程序。
7、备用电路板的维护机械部件的维护。
二、机械部件的维护
1、刀库及换刀机械手的维护
1)用手动方式往刀库上装刀时,要保证装到位,检查刀座上的锁紧是否可靠;
2)严禁把超重、超长的刀具装入刀库,防止机械手换刀时掉刀或刀具与工件、夹具等发生碰撞;
3)采用顺序选刀方式须注意刀具放置在刀库上的顺序是否正确。其他选刀方式也要注意所换刀具号是否与所需刀具一致,防止换错刀具导致事故发生;
4)注意保持刀具刀柄和刀套的清洁;
5)经常检查刀库的回零位置是否正确,检查机床主轴回换刀点位置是否到位,并及时调整,否则不能完成换刀动作;
6)开机时,应先使刀库和机械手空运行,检查各部分工作是否正常,特别是各行程开关和电磁阀能否正常动作。
2、滚珠丝杠副的维护
1)定期检查、调整丝杠螺母副的轴向间隙,保证反向传动精度和轴向刚度;
2)定期检查丝杠支撑与床身的连接是否松动以及支撑轴承是否损坏。如有以上问题要及时紧固松动部位,更换支撑轴承;
3)采用润滑脂的滚珠丝杠,每半年清洗一次丝杠上的旧油脂,更换新油脂。用润滑油润滑的滚珠丝杠,每天机床工作前加油一次;
4)注意避免硬质灰尘或切屑进入丝杠防护罩和工作过程中碰击防护罩,防护装置一有损坏要及时更换。
3、主传动链的维护
1)定期调整主轴驱动带的松紧程度;
2)防止各种杂质进入油箱。每年更换一次润滑油;
3)保持主轴与刀柄连接部位的清洁。需及时调整液压缸和活塞的位移量;
4)要及时调整配重。
4、液压系统维护
1)定期过滤或更换油液;
2)控制液压系统中油液的温度;
3)防止液压系统泄漏;
4)定期检查清洗油箱和管路;
5)执行日常点检查制度。
5、气动系统维护
1)清除压缩空气的杂质和水分;
2)检查系统中油雾器的供油量;
3)保持系统的密封性;
4)注意调节工作压力;
5)清洗或更换气动元件、滤芯;
数控机床故障检修:
在数控机床中,大部分的故障都有资料可查,但也有一些故障,提供的报警信息较含糊甚至根本无报警,或者出现的周期较长,无规律,不定期,给查找分析带来了很多困难。对这类机床故障,需要对具体情况分析,进行耐心的查找,而且检查时特别需要机械、电气、液压等方面的综合知识,不然就很难快速、正确地找到故障的真正原因。
加工精度异常故障:系统参数发生变化或改动、机械故障、机床电气参数未优化电机运行异常、机床位置环异常或控制逻辑不妥,是生产中数控机床加工精度异常故障的常见原因,找出相关故障点并进行处理,机床均可恢复正常。生产中经常会遇到数控机床加工精度异常的故障。此类故障隐蔽性强、诊断难度大。
导致此类故障的原因主要有五个方面:
1、机床进给单位被改动或变化;
2、机床各轴的零点偏置(NULLOFFSET)异常;
3、轴向的反向间隙(BACKLASH)异常;
4、电机运行状态异常,即电气及控制部分故障;
5、机械故障,如丝杆、轴承、轴联器等部件。
此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。
机械故障导致的加工精度异常,主要应对以下几方面逐一进行检查。
1、检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。
2、在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。由此判断,机械方面可能存在隐患。
数控机床故障排除:
1、初始化复位法:一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电,拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。
2、参数更改,程序更正法:系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统的块搜索功能进行检查,改正所有错误,以确保其正常运行。
3、调节,最佳化调整法:调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。如某厂维修中,其系统显示器画面混乱,经调节后正常。如在某厂,其主轴在启动和制动时发生皮带打滑,原因是其主轴负载转矩大,而驱动装置的斜升时间设定过小,经调节后正常。
最佳化调整是系统地对伺服驱动系统与被拖动的机械系统实现最佳匹配的综合调节方法,其办法很简单,用一台多线记录仪或具有存贮功能的双踪示波器,分别观察指令和速度反馈或电流反馈的响应关系。通过调节速度调节器的比例系数和积分时间,来使伺服系统达到即有较高的动态响应特性,而又不振荡的最佳工作状态。在现场没有示波器或记录仪的情况下,根据经验,即调节使电机起振,然后向反向慢慢调节,直到消除震荡即可。
4、备件替换法:用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板修理或返修,这是最常用的排故办法。
5、改善电源质量法:一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。
6、维修信息跟踪法:一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员。以此做为故障排除的依据,可正确彻底地排除故障。
数控机床诊断方法:
数控机床电气故障诊断有故障检测、故障判断及隔离和故障定位三个阶段。*阶段的故障检测就是对数控机床进行测试,判断是否存在故障;第二阶段是判定故障性质,并分离出故障的部件或模块;第三阶段是将故障定位到可以更换的模块或印制线路板,以缩短修理时间。为了及时发现系统出现的故障,快速确定故障所在部位并能及时排除,要求故障诊断应尽可能少且简便,故障诊断所需的时间应尽可能短。为此,可以采用以下的诊断方法:
1、直观法
利用感觉器官,注意发生故障时的各种现象,如故障时有无火花、亮光产生,有无异常响声、何处异常发热及有无焦煳味等。仔细观察可能发生故障的每块印制线路板的表面状况,有无烧毁和损伤痕迹,以进一步缩小检查范围,这是一种最基本、最常用的方法。
2、CNC系统的自诊断功能
依靠CNC系统快速处理数据的能力,对出错部位进行多路、快速的信号采集和处理,然后由诊断程序进行逻辑分析判断,以确定系统是否存在故障,及时对故障进行定位。现代CNC系统自诊断功能可以分为以下两类:
1)开机自诊断开机自诊断是指从每次通电开始至进入正常的运行准备状态为止,系统内部的诊断程序自动执行对CPU、存储器、总线、I/O单元等模块、印制线路板、CRT单元、光电阅读机及软盘驱动器等设备运行前的功能测试,确认系统的主要硬件是否可以正常工作。
2)故障信息提示当机床运行中发生故障时,在CRT显示器上会显示编号和内容。根据提示,查阅有关维修手册,确认引起故障的原因及排除方法。一般来说,数控机床诊断功能提示的故障信息越丰富,越能给故障诊断带来方便。但要注意的是,有些故障根据故障内容提示和查阅手册可直接确认故障原因;而有些故障的真正原因与故障内容提示不相符,或一个故障显示有多个故障原因,这就要求维修人员必须找出它们之间的内在,间接地确认故障原因。
3、数据和状态检查
CNC系统的自诊断不但能在CRT显示器上显示故障报警信息,而且能以多页的“诊断地址”和“诊断数据”的形式提供机床参数和状态信息,常见的数据和状态检查有参数检查和接口检查两种。
1)参数检查数控机床的机床数据是经过一系列试验和调整而获得的重要参数,是机床正常运行的保证。这些数据包括增益、加速度、轮廓监控允差、反向间隙补偿值和丝杠螺距补偿值等。当受到外部干扰时,会使数据丢失或发生混乱,机床不能正常工作。
2)接口检查CNC系统与机床之间的输入/输出接口信号包括CNC系统与PLC、PLC与机床之间接口输入/输出信号。数控系统的输入/输出接口诊断能将所有开关量信号的状态显示在CRT显示器上,用“1”或“0”表示信号的有无,利用状态显示可以检查CNC系统是否已将信号输出到机床侧,机床侧的开关量等信号是否已输入到CNC系统,从而可将故障定位在机床侧或是在CNC系统。
4、报警指示灯显示故障
现代数控机床的CNC系统内部,除了上述的自诊断功能和状态显示等“软件”报警外,还有许多“硬件”报警指示灯,它们分布在电源、伺服驱动和输入/输出等装置上,根据这些报警灯的指示可判断故障的原因。
5、备板置换法
利用备用的电路板来替换有故障疑点的模板,是一种快速而简便的判断故障原因的方法,常用于CNC系统的功能模块,如CRT模块、存储器模块等。需要注意的是,备板置换前,应检查有关电路,以免由于短路而造成好板损坏,同时,还应检查试验板上的选择开关和跨接线是否与原模板一致,有些模板还要注意模板上电位器的调整。置换存储器板后,应根据系统的要求,对存储器进行初始化操作,否则系统仍不能正常工作。
6、交换法
在数控机床中,常有功能相同的模块或单元,将相同模块或单元互相交换,观察故障转移的情况,就能快速确定故障的部位。这种方法常用于伺服进给驱动装置的故障检查,也可用于CNC系统内相同模块的互换。
7、敲击法
CNC系统由各种电路板组成,每块电路板上会有很多焊点,任何虚焊或接触不良都可能出现故障。用绝缘物轻轻敲打有故障疑点的电路板、接插件或电器元件时,若故障出现,则故障很可能就在敲击的部位。
8、测量比较法
为检测方便,模块或单元上设有检测端子,利用万用表、示波器等仪器仪表,通过这些端子检测到的电平或波形,将正常值与故障时的值相比较,可以分析出故障的原因及故障的所在位置。由于数控机床具有综合性和复杂性的特点,引起故障的因素是多方面的。上述故障诊断方法有时要几种同时应用,对故障进行综合分析,快速诊断出故障的部位,从而排除故障。同时,有些故障现象是电气方面的,但引起的原因是机械方面的;反之,也可能故障现象是机械方面的,但引起的原因是电气方面的;或者二者兼而有之。因此,对它的故障诊断往往不能单纯地归因于电气方面或机械方面,而必须加以综合,全方位地进行考虑。
B. 三综合振动中的增益输出是什么意思
调整PID的控制参数。
数控机床
数控机床是数字控制机床(Computer numerical control machine tools)的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,用代码化的数字表示,通过信息载体输入数控装置。经运算处理由数控装置发出各种控制信号,控制机床的动作,按图纸要求的形状和尺寸,自动地将零件加工出来。数控机床较好地解决了复杂、精密、小批量、多品种的零件加工问题,是一种柔性的、高效能的自动化机床,代表了现代机床控制技术的发展方向,是一种典型的机电一体化产品。
C. 数控机床伺服系统跟随误差、增益和进给速度之间的关系
跟随误差是编码器反馈量与伺服命令量的差值,这个值会逐渐收敛到0,增益大,收敛速度快,反之慢。进给速度快就是伺服单位时间内的命令量多,命令多,反馈就多,那么收敛速度也可以说是变慢了吧。
D. [求助]数控机床(可以法兰克系统为例)各术语解释!谢谢!
ABS
·参照“绝对”一词。
A/D Converter
·参照模拟/字变换器。
AI
Artificial Intelligence
人工智能、让机械代替人进行作业。
AGV
Automatic guided vehicle
无人搬运车。装载着工件、工具或夹具等按计算机的指令,搬送到车间内的指定场所。
APC
Absolute Pulse Coder
绝对脉冲检测器。
是可以检测机床全行程绝对坐标值的编码器。
装在伺服电机内部。装有这个检测器的装置,电源接通后,不必返回原点机械可以自动运行
APC
Automatic pallet changer
自动交换托盘装置。
APT
·参照APT。
ASCII
·参照ASCII。
ATC
Automatic tool changer
自动换刀装置。
〔B〕
Bit(二进制位)
二进制数的位。此词可作为信息量的单位使用。即用二进制的总位数来表示存储容量。
BCD
Binary Coded Decimal
也称为2进制化的10进制。把1位10进制数用4位2进制表示。4位可以表示16个数,但只选其中0~9的表示方法,这就是BCD。
Bus(总线)
是计算机的硬件,传送数据的公共通道。
Byte(字节)
由8个二进制位构成的信息的基本单位。
CAD
Computer Aided Design
计算机辅助设计。
CAM
Computer aided Manufacturing
计算机辅助制造。
CIM
Computer Integrated Manufacturing
计算机集成制造系统。以计算机生产系统为中心。
包括材料的采购、生产管理、工艺管理、物流管理、销售等与生产有关的各领域综合起来的制造工程系统。
CISC
Complex Instruction Set Computer
复合指令集的计算机。减少CPU的基本指令数,提高处理速度的计算机。
·参照RISC。
CSSC
Constant Surface S Speed Control
请参照恒周速控制一项。
CNC(计算机数控)
Computerized Numerically Control
是内部装有计算机或微处理器的NC。
由计算机存储器中存储的控制程序决定控制功能并实施控制。称为存储程序方式的NC。
更换控制程序可以变更功能,具有很高的通融性。用途广泛。即不只是用于数控机床还作为制图机、数字化仪、气体切割机等的NC控制。
CPU
Central Processing Unit
中央处理器。电子计算机的主要构成部件。
是解读命令、执行命令的装置。中央处理器控制内部存储装置和运算装置间的信息传送及计算机的操作顺序等。
CP控制
Continuous Path Control
·参照轮廓控制。
CR
Carriage Return
回车。把打印位置返回到同一行的第一个位置的功能字符。
〔D〕
DDA(数字微分分析器)
Digital Differential Analyzer
使用数字微分器的插补方式。
DNC(直接数控)
Direct Numerically Control
用中央过程控制计算机,同时控制多台机床的控制系统。
中央过程计算机同时进行加工程序的实时处理,车间生产管理,能源管理的记录。如果进行大分类的话,以前的NC装置是与个机床相连的,而该计算机是控制这些NC装置的。
DRAM
·请参照RAM。
DPL
·请参照显示单元项。
DSCG(正弦、余弦波形数字发生器)
Digital Sine Cosine Generator
把一定频率的交流信号的振幅按着正弦函数或余弦函数变成数字信号的信号发生器。
FMC
Flexible Manufacturing Cell
柔性制造单元。
通常是指小规模的廉价的FMS或者FMS中的一个生产单位。
FMS
Flexible Manufacturing System
柔性制造系统。
由NC机床、工业机器人、自动搬送系统、自动仓库系统以及管理这些设备的计算机中央管理系统构成的进行多品种,小批量生产,无人管理的高效率制造系统。
F/V转换器
Frequency to Voltage converter
把频率信号变成电压信号的单元。
HRV(高速响应矢量)
High Response Vector
用高速DSP和高性能的控制软件,来提高电流控制的响应性和稳定性。
IC(集成电路)
Integrated Circuit
按照实现的功能把半导体、电阻等电路元件作成一体不可分的微型电路元件。根据集成度,有以下几种。
SSI (Small Scale Integration)
MSI (Medium Scale Integration)
LSI (Large Scale Integration)
VLSI(Very Large Scale Integration)
LSI是由极多的逻辑之件作成的大规模集成电路。
LCD
Liquid Crystal Display
液晶显示器。利用液晶因电压的变化可以变黑的性质制成的显示器。
LED
Light Emitting Diode
发光二极管。通电后可以发出可视光的半导体元件。
LSI(大规模集成)
Large Scale Integration
有1000~数万个晶体管的大规模集成电路。
〔M〕
MAP(制造业自动化通讯协议)
Manufacturing Automation Protocol
为了使生产工程自动化。把计算机与机器人、NC机床连接起来作成网络。MAP是关于此网络的规则与通
讯协议。
是FA用的LAN(Local Arer Network)的通信规则之一。是美国GM公司(General Motors)为本公司车间使用而开发的,它已成为国际性标准。
MDI
Manual Data Input
·参照“手动数据输入”项。
MTBF
Mean Time Between Failure
平均故障时间。
〔N〕
NC连接单元
NC Linkage Unit (NLU)
DNC中连接计算机和NC的接口。此时NC上需要有计算机连接电路。
OS(操作系统)
Operating System
为有效地使用计算机系统而制成的软件,译为基本软件。
有名的有MS-DOS、OS/2、UNIX、Mach等。
OSI(开放系统结构)
Open Systems Interconnection
开放型系统间的相互连接,及不同机种计算机交换数据的通信规则。
〔P〕
PMC(可编程机床控制器)
Programmable Machine Controller
按照设计的动作顺序,控制机床工作的装置。PC中没有继电器电路的工作部分,用半导体存储器中存储的顺序程序完成它的任务。
按照NEMA标准中的定义,PMC是通过数字或模拟的输入、输出模块,内部继电器、存储器、定时器和计数器等,按照基本指令、算术、逻辑及功能指令编制的顺序逻辑程序控制机床强电部分动作的电子装置。
PLC
Programmable Logic Controller
可编程逻辑控制器。
PWM
Pulse Width Molation
·参照脉宽调制项。
〔R〕
RAM(随机存储器)
Random access memory
可以随机地存取,并经常可以自由地改写其内容的存储装置。大致分类如下:
DRAM(Dynamic RAM )
SRAM(Static RAM )
DRAM是利用在电容上蓄积电荷时的状态为1,不蓄积的状态为0,进行信息存信者的。但是由于有漏电流,存储的信息会丢失,所以要不断改写(再生)。而SRAM是双稳态电路,利用一方的电压状态为1,另一方为0,来存储信息。其内容不需再生。
RISC(简化指令集的计算机)
Reced Instruction Set Computer
是指减少指令集的计算机。是加利福尼亚大学开发的处理器(运算处理装置)的设计方法。用减少CPU
基本指令集的方法,提高计算机的处理速度。运算能力是以前CISC型的数十倍。
〔R〕
ROM(只读存储器)
Read only memory
是不能自动写入的存储装置。只能读出使用。通常存储控制程序常数等。
·参照“ROM”项。
RS232C
计算机与终端装置连接的接口标准。是美国电子工业会EIA(Electronic Instrial Association)规定的标准。
TFT(薄膜型晶体管)
Thin Film Transistor
薄模型晶体管和液晶显示器等。
编码器
Encoder
把信息变成代码的装置。使用码盘或标尺作成的位置检测器。
·参见脉冲编码器。
NC连接单元
NC Linkage Unit (NLU)
是连接DNC的计算机和NC的接口。此时,NC中需要有计算机的连接电路。
MDI
Manual Data Input
·参见手动数据输入。
误差检测
Error Detection
机床输入给控制装置的信号。在此信号ON期间,机床到达指令位置以后,开始下个指令的动作。
MPU
Micro Procrssing Unit
·参见微处理器。
程序结束
End of Program
表示工件加工结束,NC装置读到该地址字,在该程序段的作业执行完了之后,主轴、冷却剂、进给等都停止。
程序段结束
End of Block
是NC程序中表示1个程序段结束的字符。
简写成EOB。在ISO标准中使用NL或LF代码,在EIA标准中,用CR代码。
倍率
Override
为了适应工件或加工条件,操作者手动改变程序值(进给速度、主轴转速等)的功能。如下图所示,倍率用机床操作面板上的波段开关设定。
进给功能
Feed function
指定刀具相对于工件的进给(进给速度或进给量)的功能。用地址F和其后面的数字表示。有每分钟进给(mm/min)和每转进给(mm/rev)。用F4位(直接指令)指令。
偏移
Offset
在线性放大器中,输出电压为0时所需要的输入电压或电流。
偏离电压
Offset Voltage
输入电路的信号为零,可是输出不为零,此时为了使输出为0,必须给输入端子加电压,该电压即为偏移电压。
选择停机
Optional Stop
是1个辅助功能。把机床操作面板上表示此功能的开关置于ON时,其动作与程序停机相同。当开关置于OFF时,此功无效。
跳过任选程序段
Optional Block Skip
在某一程序段开头有“/”(斜杠)代码,且机床操作面板上的对应开关为ON时,可以使该程序的指令无效,为OFF时,该段即有效。
选择
Option
在NC功能中,标准功能以外,备有的功能,但需用户选择订购。
定向、定方位
Orientation
就是方位定位的意思。主轴准停就是使主轴在事先确定的位置上停止的功能。
用户宏程序
Custom Macro
用户自己编写的为了使NC机床进行某种动作的指令群。在用户程序中,以变量为中心,也可以使用函数计算循环和转移等控制命令。
刀位指令带
Cutter Location Tape
记录刀具位置、进给速度、辅助功能等指令的磁带。记录主处理器中处理的结果。
浮动原点
Floating Zero
可以任意设置坐标系原点位置的NC机床的功能。此时,以前设定的原点的信息被丢失。具有此功能的NC机床上,可用同一程序在不同位置加工同样形状的工件。
干扰
Disturbance
使控制系统状态不正常的外部作用。
角度位置检测器
Angle Position Transsor
检测角度位置变化的装置。有回转式感应同步器、旋转变压器、脉冲发生器等。
奇偶校验
Parity Check
在由0和1组合起来信息中,附加1位,用来检查该组信息。即用1的数量是奇数或是偶数检查
该组信息是否出错。当NC纸带用EIA代码时是奇校验,ISO代码时是偶校验。另外使用NC纸带时,在水平方向,垂直方向都进行奇、偶校验。
允许误差
Tolerance
标准值与允许的极限值之差。
强电顺序控制
Sequence Control
是NC和机床的接口部分,是控制主轴电机、自动换刀、其他辅助功能等顺序的电路。对于顺序控制有用继电器、半导体元件等硬连接方式和用PC(Programmble Logic Controller)的软连接方式,一般称为PLC(Programmble Logic Controller)与FANUC内装的PC有不同的意义,FANUC称为PMC(Programmable Machine Controller)。
重复定位精度
Repeatability
重复定位精度是指机床的可动部件在同一条件下在同一地点重复定位得到的精度。其误差是随机产生的。
栅格方式
Grid Method
用位置检测器的1转信号,生成电气格子位置,是确定原点的一种方式。
时钟脉冲
Clock Pulse
用于同步控制的冈步信号。
增益
Gain
机床的速度V被指令值与检测值的差E来除所得的值。
即:G=V/E。把G值称为定位伺服环的增益。(单位 sec-1)
原点
Zero Point
绝对坐标系的原点或增量坐标系的始点。
设定原点
Zero Offset
是指设定绝对坐标系的原点。只对可以使用绝对坐标系的装置有效。
刀具位置补偿
Tool Offset
在与控制轴平行的方向上进行刀具位置补偿。
例如,在车削中,首先装03号刀具,进行试加工,测量加工尺寸,把它与程序中的刀具位置偏移量用手动进行设定。以后选择T03时,自动地进行这个补偿。
刀具功能(T功能)
Tool Function
自动或手动换刀时,指定刀具的功能。用地址及其后面的数字来指定。
原点偏移
Zero Offset
NC机床上相对某一固定的原点把坐标系的原点偏移的功能。此时需要存储永久的原点。
E. 数控机床在进给时出现窜动现象是怎么回事
窜动在进给时出现窜动现象,即在切削过程中,进给速度应均匀时,突然出现加速现象。产生的原因可能有:测速信号不稳定,如测速装置不稳定、测速反馈信号干扰等;速度控制信号不稳定或受到干扰;接线端子接触不良,如螺钉松动等。
当窜动发生在由正向运动向反向运动转换的瞬间时,一般是进给传动链的反向间隙或伺服系统增益过大所致。排除方法是逐一检查上述可能故障点,找到故障,确定原因并加以排除。
F. (单选)在数控机床闭环进给伺服系统中,系统增益大,则( )
系统增益大:(数控系统大体分位置环增益和速度换增益,所以这道题出的不是很严谨),总体来讲,选D
G. 数控机床爬行与振动怎么检查排除
在驱动移动部件低速运行过程中,数控机床进给系统会出现移动部件开始时不能启动,启动后又突然作加速运动,而后又停顿,继而又作加速运动,移动部件如此周而复始忽停忽跳、忽慢忽快的运动现象称为爬行。而当其以高速运行时,移动部件又会出现明显的振动。
对于数控机床进给系统产生爬行的原因,一般认为是由于机床运动部件之间润滑不好,导致机床工作台移动时静摩擦阻力增大;当电机驱动时,工作台不能向前运动,使滚珠丝杠产生弹性变形,把电机的能量贮存在变形上;电动机继续驱动,贮存的能量所产的弹性力大于静摩擦力时,机床工作台向前蠕动,周而复始地这样运动,产生了爬行的现象。
事实上这只是其中的一个原因,产生这类故障的原因还可能是机械进给传动链出现了故障,也可能是进给系统电气部分出现了问题,或者是系统参数设置不当的缘故,还可能是机械部分与电气部分的综合故障所造成。
数控机床爬行与振动故障的诊断与排除:
对于数控机床出现的爬行与振动故障,不能急于下结论,而应根据产生故障的可能性,罗列出可能造成数控机床爬行与振动的有关因素,然后逐项排队,逐个因素检查、分析、定位和排除故障。查到哪一处有问题,就将该处的问题加以分析,看看是否是造成故障的主要矛盾,直至将每一个可能产生故障的因素都查到。最后再统筹考虑,提出一个综合性的解决问题方案,将故障排除。排除数控机床进给系统爬行与振动故障的具体方法如下:
1、对故障发生的部位进行分析
爬行与振动故障通常需要在机械部件和进给伺服系统查找问题。因为数控机床进给系统低速时的爬行现象往往取决于机械传动部件的特性,高速时的振动现象又通常与进给传动链中运动副的预紧力有关。
另外,爬行和振动问题是与进给速度密切相关的,因此也要分析进给伺服系统的速度环和系统参数。
2、机械部件故障的检查和排除
造成爬行与振动的原因如果在机械部件,首先要检查导轨副。因为移动部件所受的摩擦阻力主要是来自导轨副,如果导轨副的动、静摩擦系数大,且其差值也大,将容易造成爬行。
尽管数控机床的导轨副广泛采用了滚动导轨、静压导轨或塑料导轨,如果调整不好,仍会造成爬行或振动。静压导轨应着重检查静压是否建立;塑料导轨应检查有否杂质或异物阻碍导轨副运动,滚动导轨则应检查预紧是否良好。
导轨副的润滑不好也可能引起爬行问题,有时出现爬行现象仅仅就是导轨副润滑状态不好造成的。这时采用具有防爬作用的导轨润滑油是一种非常有效的措施,这种导轨润滑油中有极性添加剂,能在导轨表面形成一层不易破裂的油膜,从而改善导轨的摩擦特性。
其次,要检查进给传动链。在进给系统中,伺服驱动装置到移动部件之间必定要经过由齿轮、丝杠螺母副或其他传动副所组成的传动链。有效提高这一传动链的扭转和拉压刚度,对于提高运动精度,消除爬行非常有益。
引起移动部件爬行的原因之一常常是因为对轴承、丝杠螺母副和丝杠本身的预紧或预拉不理想造成的。传动链太长、传动轴直径偏小、支承和支承座的刚度不够也是引起爬行的不可忽略的因素,因此在检查时也要考虑这些方面是否有缺陷。
另外机械系统连接不良,如联轴器损坏等也可能引起机床的振动和爬行。
3、进给伺服系统故障的检查和排除
如果爬行与振动的故障原因在进给伺服系统,则需要分别检查伺服系统中各有关环节。应检查速度调节器、伺服电机或测速发电机、系统插补精度、系统增益、与位置控制有关的系统参数设定有无错误、速度控制单元上短路棒设定是否正确、增益电位器调整有无偏差以及速度控制单元的线路是否良好等环节,逐项检查分类排除。
4、速度调节器的检测
对速度调节器的故障,主要检测给定信号、反馈信号和速度调节器本身是否存在问题。给定信号可以通过由位置偏差计数器出来经D/A转换给速度调节器送出的模拟信号VCMD的检测实现,这个信号是否有振动分量可以通过对伺服板上的插脚用示波器来观察。如果就有一个周期的振动信号,那毫无疑问机床振动是正确的,速度调节器这一部分没有问题,而是前级有问题;然后向D/A转换器或偏差计数器去查找问题,如果我们测量结果没有任何振动的周期性的波形,那么问题肯定出在反馈信号和速度调节器。
5、测速电机反馈信号的检测
反馈信号与给定信号对于调节器来说是完全相同的。因此出现了反馈信号的波动,必然引起速度调节器的反方向调节,这样就引起机床的振动。由于机床在振动,说明机床的速度在激烈的振荡中,当然测速发电机反馈回来的波形也一定是动荡的。这时如果机床的振动频率与电机旋转的速度存在一个准确的比率关系,譬如振动的频率是电机转速的四倍频率。这时我们就要考虑电机或测速发电机有故障的问题。
6、电机检查
当机床振动频率与电机转速成一定比率,首先就要检查一下电动机是否有故障,检查它的碳刷、整流子表面状况,以及检查滚珠轴承的润滑情况。
另外电动机电枢线圈不良也会引起系统振动。这种情况可以通过测量电动机的空载电流进行确认,若空载电流随转速成正比增加,则说明电动机内部有短路现象。出现本故障一般应首先清理换向器、检查电刷等环节,再进行测量确认。如果故障现象依然存在,则可能是线圈匝间有短路现象,应对电动机进行维修处理。如果没有什么问题,就要检查测速发电机。
7、脉冲编码器或测速发电机的检测
对于脉冲编码器或测速发电机不良的情况,可按下述方法进行测量检查。首先将位置环、速度环断开,手动电动机旋转,观察速度控制单元印制电路板上F/V变换器的电压,如果出现电压突然下跌的波形,则说明反馈部件不良。
测速发电机中常常出现的一个问题是炭刷磨下来的炭粉积存在换向片之间的槽内,造成测速发电机换向片片间短路,一旦出现这样的问题就会引起振动。
8、系统参数的调节
一个闭环系统也可能是由于参数设定不合理而引起系统振荡,消除振荡的最佳方法就是减少放大倍数。在FUNAC的系统中调节RV1,逆时针方向转动,这时可以看出立即会明显变好,但由于RV1调节电位器的范围比较小,有时调不过来,只能改变短路棒,也就是切除反馈电阻值,降低整个调节器的放大倍数。
9、外部干扰的处理
对于固定不变的干扰,可检查F/V变换器、电流检测端子以及同步端的波形,检查是否存在干扰,并采取相应的措施。对于偶然性干扰,只有通过有效的屏蔽、可靠的接地等措施,尽可能予以避免。
采用这些方法后,还做不到完全消除振动,甚至是无效的,就要考虑对速度调节器板更换或换下后彻底检查各处波形。
H. 数控机床的增益是指什么
丝杠磨损后会造成背隙增大,数据机床一般采用的是半闭环控制,背隙的大小在控制系统中表现就是死区的大小,死区的改变会影响控制系统的输出稳定性,产生振荡,可以通过调节系统反馈增益的大小重新使控制系统输出稳定。
I. 关于数控机床的几个问题
1,一般来说半闭环精度比全闭环差.
2,3,我也不会
4,换刀TL+,TL-是输出.刀位号是输入.
5,又是数控又是宫颈癌
6,行程开关信号有ESP,N+,N-是开关量输入信号
7,8,9是对的,
10,你想问的是电子齿轮比吗?1:1
11,一般是电机的额定频率,有50HZ和33.3HZ等要看你的主电机.
12-15看不明白
16,方向加脉冲
17,2.5V
18,最高耐压600V