导航:首页 > 制冷设备 > 当代超声波程序怎么选

当代超声波程序怎么选

发布时间:2022-08-22 06:30:01

Ⅰ 程序中怎么设置超声波测距的范围定时器初值该如何设置12M晶振

超声波发射开始计时,接收到后停止计数器。得到一个时间,时间乘以速度得到距离。
最小范围是由你设定的盲区所决定。因为要避开超声波的余震。一般可以达到20cm这样。
最大范围是有你所用的超声波发射模块的功率所决定,因为距离越远,超声波衰减的越厉害。如果测距要达到1500cm,那么超声波的路程就是3000cm,必须得大大提高发射的功率。同时加大测距间隔。

Ⅱ 如何正确选择医用超声波清洗机

一、医用超声波清洗机的种类

医用超声波清洗机根据清洗的不同要求具有不同的配置,大致可分为以下几种:

1、单槽医用超声波清洗机:只具备超声波清洗槽,其中又有卧式和台式两种。

2、双槽医用超声波清洗机:包括超声波清洗槽、超声波漂洗槽。

3、多槽医用超声波清洗机:在双槽的基础上添加了循环过滤、漂洗、烘干等功能。

4、医用全自动超声波清洗机:设定程序后,可自动完成整个清洗流程(包括烘干),无需人工干预,适用于医院大批量器具清洗消毒。

三、医用超声波清洗机有哪些优势

作为医院手术室、供应室、消毒中心及科研单位、制药厂的实验室、化验室的必备设备之一,医用超声波清洗机的优点是:

1、清洗效果好 许多医疗器械存在表面凹凸不平、盲孔小的特点,即使用蒸汽清洗、高压水射流也无法清洗干净,而超声波清洗机的空化作用能加速器械表面膜的溶解,清洗效果更好更彻底。

2、清洗效率高 过去传统清洗医疗器械,通常要进行器械多酶浸泡、手工刷洗、冲洗等工序,费时又费力,并且人工操作很难保证器械清洗质量,而使用医用超声波清洗机非常方便,将器械浸泡多酶清洗液后,直接放入清洗槽内,放好清洗剂,设置好温度、时间即可自动清洗,效率相当高。

3、卫生安全 医用超声波清洗机是一种无污染的设备,在清洗过程中也不会产生电磁辐射等问题,清洗全程无须人手接触,消除二次污染;对于医护人员来说也可以隔离器械上残留的细菌病毒,保护医护人员的安全卫生。

Ⅲ 超声波测距程序问题

程序我没有仔细看,有些思路你考虑一下:
1、不知道你用的哪个型号的单片机,计数器所用的时钟频率是多少?5cm意味着约300uS的声波传输时间,结合你的计数频率和计数器的位数,看看300uS你的计数器有没有溢出;
2、超过5cm的时候,用示波器探一下有没有收到声波信号,可能是你的放大倍数不够,信号太弱导致信号没有被识别;
3、仔细考虑一下你的收发探头的安装方式,有没有可能接收到直射波,我觉得这种可能性要大一些;超声测距,接收探头必须只接收到反射波,否则测出来肯定不准确;
4、测试不准确,可以考虑进行多次测量,去掉一半的异常值(比如说测回来8个数,去掉2个最大的,再去掉2个最小的),然后取平均;这样测出来的结果相对准确一些。
就是这些了,希望对你有帮助

Ⅳ 求基于AT89C52超声波测距简易设计的源程序,要求用3个LED管显示其测距,精确到小数点后2位如,X.XX米。

目前国内超声波测距器的设计大多采用汇编语言设计。由于单片机应用系统的日趋复杂,要求所写
的代码规范化,模块化,并便于多人以软件工程的形式进行协同开发,汇编语言作为传统的单片机应用系
统的编程语言,已经不能满足这样的实际需要了,而C语言以其结构化和能产生高效代码满足了这样的需
求,成为电子工程师进行单片机系统编程时的首先编程语言。在本设计中,由于C语言程序有利于实现较
复杂的算法,汇编语言程序具有较高的效率并且容易精确计算程序运行的时间,而超声波测距器的程序既
有较复杂的距离计算又要求精确计算超声波测距时程序运行的时间,所以本设计采用C语言和汇编语言
混合编程来实现。本文论述的是一种基于AT89C52单片机的超声波测距器,可用于汽车倒车等场合⋯。
1设计要求
设计一个超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用
于如液位、井深、管道长度的测量等场合。要求测量范围在0.10—5.00 m,测量精度lem,测量时与被测物
体无直接接触,能够清晰稳定地显示测量结果。
2设计思路
2.1超声波及其测距原理
超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送
器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应
的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换为超声波,发射超声波;而在收到回
波的时候,则将超声振动转换成电信号。
超声波测距的原理一般采用渡越时间法TOt(time of fliight)。首先测出超声波从发射到遇到障碍物返
回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离。测量距离的方法有很多
种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波
收稿日期:2008-04-08
作者简介:周功明(1963一),男,副教授,主要研究方向:电子信息科学技术。
·50· 绵阳师范学院学报(自然科学版) 第27卷
在标准空气中的传播速度为331.45粑秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测
量精度理论上可以达到毫米级。由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波
可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也
能达到要求。
超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题
属于近距离测量,可以采用常用的压电式超声波换能器来实现【7】。
2.2超声波测距器的系统框图
根据设计要求并综合各方面因素,可以采用AT89C52单片机作为主控制器,用动态扫描法实现LED
数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图l所示¨2|:
3系统组成
3.1硬件部分
主要由单片机系统及显示电路、超声波发射电路
和超声波检测接收电路三部分组成。采用AT89C52来
实现对CX20106A红外接收芯片和TCT40—10系列超
声波转换模块的控制。单片机通过P1.0引脚经反相

超声波接收E :, LED显示单片机r
/\
Z ∑
超声波发送高控制器
:> 扫描驱动
图1 超声波测距器系统设计框图
Fig.1 Ultrasonic eLangi.g system design diagram
器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INTO引脚的电平由高电平变为低电平时就
认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍
物之间的距离¨≈J。
3.2软件部分
主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序等部分。
4系统硬件电路设计
4.1单片机系统及显示电路
单片机采用AT89C52或其兼容系列。采用12MHz高精度的晶振,以获得较稳定的时钟频率,减小测
量误差。单片机用P1.0端口输出超声波转化器所需的40KHz方波信号,利用外中断0口检测超声波接收
电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP
三极管驱动。单片机系统及显示电路如下图2所示‘1。31。
图2单片机及显示电路原理图
Fig.2 MCU and display circuit schematics
第8期周功明等:基于AT89C52单片机的超声波测距器设计·51.
4.2超声波发射电路原理图
压电超声波转换器的功能:利用压电晶体谐振工作。内部结构如图3‘3Ⅲ1所示,它有两个压电晶片和
一个共振板。当它的两极外加脉冲信号,其频
率等于压电晶片的固有振荡频率时,压电晶片PI.O
将会发生共振,并带动共振板振动产生超声波,
这时它就是一超声波发生器;如没加电压,当共
振板接收到超声波时,将压迫压电振荡器作振
动,将机械能转换为电信号,这时它就成为超声
波接收转换器。超声波发射转换器与接收转换
器其结构稍有不同。
4.3超声波检测接收电路图3发射电路原理图
参考红外转化接收电路,本设计采用集成
F‘g·3 U1‘ms。nie劬啪mi‘妇c‘咖1‘∞hem蚯c
电路CX20106A,这是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控
常用的载波频率38KHz与测距超声波频率
40KHz较为接近,可以利用它作为超声波检测
电路。如图4【3 J[71超声波检测接收电路原理图
所示,适当改变C4的大小,可改变接收电路的
灵敏度和抗干扰能力。⋯. J。j-二
5系统程序设计
超声波测距软件设计主要由主程序,超声
波发射子程序,超声波接收中断程序及显示子
程序组成。下面对超声波测距器的算法,主程
序,超声波发射子程序和超声波接收中断程序
逐一介绍。
5.1超声波测距器的算法设计
GND
图4超声波检测接收电路原理图
Fig.4 Ultrasonic receiver and detection circuit schematic
图5【_列示意了超声波测距的原理,即超声
波发生器T在某一时刻发出的一个超声波信号,当超声波遇到被测物
体后反射回来,就被超声波接收器R所接受。这样只要计算出发生信
号到接收返回信号所用的时问,就可算出超声波发生器与反射物体的
距离。
距离计算公式:d=s/2=(c木t)/2,其中d为被测物与测距器的距
离,s为声波的来回路程,c为声速,t为声波来回所用的时间。
图5超声波测距原理图
Fig.5 Ultrasonic Ranging schematic
声速c与温度有关(见表1),如温度变化不大,则可认为声速是基
本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往
返时间,即可求得距离。在系统加入温度传感器来监测环境温度,可进行温度补偿。这里可以用DSl8820
测量环境温度,根据不同的环境温度确定一声速提高测距的稳定性。为了增强系统的可靠性,可在软硬件
上采用抗干扰措施。
表1不同温度下的超声波速表
Table I Under different temperatures ultrasonic velocity Table
·52· 绵阳师范学院学报(自然科学版) 第27卷
5.2主程序
主程序首先对系统环境初始化,设置定时器1D工作模式为16位的定时计数器模式,置位总中断允许
位EA并给显示端Po和P2清0。然后调用超声波发生子程序送出一个超声波脉冲,为避免超声波从发射
器直接传送到接收器引起的直接波触发,需延迟0.1ms(这也就是测距器会有一个最小可测距离的原因)
后,才打开外中断0接收返回的超声波信号。由于采用12MHz的晶振,机器周期为lus,当主程序检测到接
收成功的标志位后,将计数器哟中的数(即超声波来回所用的时
间)按下式计算即可测得被测物体与测距仪之间的距离,设计时取
20℃时的声速为344 m/s则有:d=(C木TO)/2=172T0/10000cm
(其中,ID为计数器,ID的计数值)。
测出距离后结果将以十进制BCD码方式LED,然后再发超声
波脉冲重复测量过程。主程序框图如图6所示。
5.3超声波发生子程序和超声波接收中断程序
超声波发生子程序的作用是通过PI.0端口发送2个左右的
超声波信号频率约40KHz的方波,脉冲宽度为12 US左右,同时把
计数器,ID打开进行计时。超声波测距器主程序利用外中断0检
测返回超声波信号,一旦接收到返回超声波信号(INT0引脚出现
低电平),立即进入中断程序。进入该中断后就立即关闭计时器
,ID停止计时,并将测距成功标志字赋值l。如果当计时器溢出时
还未检测到超声波返回信号,则定时器rID溢出中断将外中断0关
闭,并将测距成功标志字赋值2以表示此次测距不成功H旬J。
5.4超声波测距器的部分程序清单
/宰超声波测距器弹片机c程序使用Keil C51 ver 7.09

木/
#include<re951.h>
#define uchar unsigned int
#define uint unsigned int
#define ulong unsigned long
Extem void ca_t(void);
Extem void delay(uint);
Extem void display(unchar);
Data unehar testtok;
/木超声波测距器主程序术/
Void main(void)
{data unchar dispram[5];
data uint i;
data ulong time;
p0=0xff;
pl=0xff;
TMOD=0X11:
IE=0x80;
While(1)
{.“}
开始
系统初始化
发送超声波脉冲
等待发射超声波
计算距离
显示结果0.5s
图6主程序框图
diagram of the main program
第8期周功明等:基于AT89C52单片机的超声波测距器设计·53·
6软硬件调试
超声波测距仪的制作和调试,其中超声波发射和接收采用中15的超声波换能器TCT40一IOFl(T发
射)和TCT40—10S1(R接收),中心频率为40kHz,安装时应保持两换能器中心轴线平行并相距4—8 cm,
其余元件无特殊要求。若能将超声波接收电路用金属壳屏蔽起来,则可提高抗干扰能力。根据测量范围
要求不同,可适当调整与接收换能器并接的滤波电容C4的大小,以获得合适的接收灵敏度和抗干扰能力。
硬件电路制作完成并调试好后,便可将程序编译好下载到单片机试运行。根据实际情况可以修改超
声波发生子程序每次发送的脉冲宽度和两次测量的间隔时间,以适应不同距离的测量需要∞】【71。
7 结束语
本文设计的是基于AT89C52单片机的超声波测距器,可应用于汽车倒车等场合,提醒驾驶员倒车时有
效的避开可能对倒车造成危害的障碍物和行人,从而有效避免由于倒车造成的汽车碰撞或擦伤经济损失
和人身安全问题。具有较强的实用性。
参考文献:
[1] 周功明.基于AT89C2051弹片机的防盗自动报警电子密码锁系统设计[J].绵阳师范学院学报,2007,26(5):112—
116.
[14]
张齐.单片机应用系统设计技术一基于c语言编程[M].北京:电子工业出版社,2006.
李光飞.单片机c程序设计实例指导[M].北京:航空航天大学业出版社,2005.
楼燃苗,李光飞.51系列单片机设计实例[M].北京:航空航天大学业出版社,2003.
Zhongbo Li.Electronic Technique[M].Beijing:Mechannic Instrical Prees,2003.
赖麒文.8051单片机c语言彻底应用[M].北京:科学业出版社,2002.
何希才.传感器及其应用电路[M].北京:电子工业出版社,2001.
丁元杰.单片微机原理及应用[M].北京:机械工业出版社,2001.
孙串友,孙晓斌.感测技术基础[M].北京:电子工业出版社,2001.
马忠梅.单片机的c语言应用程序设计[M].北京:航空航天大学业出版社,1999.
刘喜昂,周志宇.基予多超声传感器的机器人安全避障技术[J].测控技术,2003,23(2):71—73.
翟国富,刘茂恺.一种实时高精度的机器人用超声波测距处理方法[J].应用声学,1990,15(1):17—24.
Cray C,Swinhoe C F,Myinl.Target controlled infusion of ketamine曲analgessia for TIV A with propof01.Can.J Anesth,1999,
40:957.
R J Higgens.Electronics and Analog Integrated Circuits[M].N.J:Prentice—Hall Inc,2001.

Ⅳ 51单片机如何控制超声波传感器 求C语言程序(一定要能用)100追加

//超声波模块ME007显示程序
//晶振=8M
//MCU=STC10F04XE
//P0.0-P0.6共阳数码管引脚
//Trig = P1^0
//Echo = P3^2
#include <reg52.h> //包括一个52标准内核的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
//***********************************************
sfr CLK_DIV = 0x97; //为STC单片机定义,系统时钟分频
//为STC单片机的IO口设置地址定义
sfr P0M1 = 0X93;
sfr P0M0 = 0X94;
sfr P1M1 = 0X91;
sfr P1M0 = 0X92;
sfr P2M1 = 0X95;
sfr P2M0 = 0X96;
//***********************************************
sbit Trig = P1^0; //产生脉冲引脚
sbit Echo = P3^2; //回波引脚
sbit test = P1^1; //测试用引脚

uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
//void pai_xu();

void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
CLK_DIV=0X03; //系统时钟为1/8晶振(pdf-45页)
P0M1 = 0; //将io口设置为推挽输出
P1M1 = 0;
P2M1 = 0;
P0M0 = 0XFF;
P1M0 = 0XFF;
P2M0 = 0XFF;
i=0;
flag=0;
test =0;
Trig=0; //首先拉低脉冲输入引脚
TMOD=0x11; //定时器0,定时器1,16位工作方式
TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
ET0=1; //打开定时器0中断
//ET1=1; //打开定时器1中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0

while(1) //程序循环
{
EA=0;
Trig=1;
delay_20us();
Trig=0; //产生一个20us的脉冲,在Trig引脚
while(Echo==0); //等待Echo回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;

while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断

if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零
test = !test; //测试灯变化
}

/// distance[i]=distance_data; //将测量结果的数据放入缓冲区
/// i++;
/// if(i==3)
/// {
/// distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
/// pai_xu();
/// distance_data=distance[1];

a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
/// i=0;
/// }
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
TH0=0xfd; //写入定时器0初始值
TL0=0x77;
switch(flag)
{case 0x00:P0=ge; P2=0xfd;flag++;break;
case 0x01:P0=shi;P2=0xfe;flag++;break;
case 0x02:P0=;P2=0xfb;flag=0;break;
}
}
//*****************************************************************
/*
//定时器1中断,用做超声波测距计时
timer1() interrupt 3 // 定时器0中断是1号
{
TH1=0;
TL1=0;
}
*/
//******************************************************************
//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;

_data=SEG7[_data];
shi_data=SEG7[shi_data];
ge_data =SEG7[ge_data];

EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************
void delay_20us()
{ uchar bt ;
for(bt=0;bt<100;bt++);
}
/*
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;} /*交换值
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;} /*交换值
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;} /*交换值
}
*/

我的一个超声波程序
有问题,请问~~

//超声波模块显示程序
#include <reg52.h> //包括一个52标准内核的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
sbit Tx = P3^3; //产生脉冲引脚
sbit Rx = P3^2; //回波引脚
sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
unsigned char code string[ ]= {"CHAO SHENG BO"};
//unsigned char code string1[ ]={"QUICK STUDY MCU"};
unsigned char code digit[ ]={"0123456789"}; //定义字符数组显示数字
//uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
void pai_xu();

/*****************************************************
函数功能:延时1ms
(3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delay(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
unsigned char BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0; //将E恢复低电平
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delay(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delay(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x38); //连续三次,确保初始化成功
delay(5);
WriteInstruction(0x0c); //显示模式设置:显示开,无光标,光标不闪烁
delay(5);
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delay(5);
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delay(5);
}

void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
uchar k; //定义变量i指向字符串数组元素
LcdInitiate(); //调用LCD初始化函数
delay(10); //延时10ms,给硬件一点反应时间
WriteAddress(0x01); // 从第1行第3列开始显示
k = 0; //指向字符数组的第1个元素
while(string[k] != '\0')
{
WriteData(string[k]);
k++; //指向下字符数组一个元素
}
i=0;

flag=0;
Tx=0; //首先拉低脉冲输入引脚
TMOD=0x10; //定时器0,定时器1,16位工作方式
// TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
//ET0=1; //打开定时器0中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0

while(1) //程序循环
{
WriteAddress(0x41); // 从第2行第6列开始显示
WriteData('J'); //将万位数字的字符常量写入LCD
WriteData('U'); //将万位数字的字符常量写入LCD
WriteData('L'); //将万位数字的字符常量写入LCD
WriteData('I'); //将万位数字的字符常量写入LCD
WriteData(':'); //将万位数字的字符常量写入LCD
WriteData(digit[]); //将万位数字的字符常量写入LCD
WriteData(digit[shi]); //将千位数字的字符常量写入LCD
WriteData('.'); //将万位数字的字符常量写入LCD
WriteData(digit[ge]); //将百位数字的字符常量写入LCD
WriteData(' '); //将百位数字的字符常量写入LCD
WriteData('C'); //将万位数字的字符常量写入LCD
WriteData('M'); //将万位数字的字符常量写入LCD
EA=0;
Tx=1;
delay_20us();
Tx=0; //产生一个20us的脉冲,在Tx引脚
while(Rx==0); //等待Rx回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;

while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断

if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零

}

distance[i]=distance_data; //将测量结果的数据放入缓冲区
i++;
if(i==3)
{
distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;

pai_xu();
distance_data=distance[1];

a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
i=0;
}
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
// TH0=0xfd; //写入定时器0初始值
// TL0=0x77;

}

//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;

//_data=SEG7[_data];
//shi_data=SEG7[shi_data]&0x7f;
//ge_data =SEG7[ge_data];

EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************

void delay_20us()
{ uchar bt ;
for(bt=0;bt<60;bt++);
}
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;}
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;}
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;}
}

第一个需要修改,你还是试试这个吧!这个你先理解下,修改引脚……显示为1602

Ⅵ 谁能给我一篇超声波测距的程序的谢谢了

相关资料,请参考

超声波测距仪设计及其应用分析

[摘要] 本文利用超声波传输中距离与时间的关系,采用AT89C51单片机进行控制及数据处理,设计出了能精确测量两点间距离的超声波测距仪。该测距仪主要由超声波发射器电路、超声波接收器电路、单片机控制电路、环境温度检测电路及显示电路构成。利用所设计出的超声波测距仪,对不同距离进行了测试,并进行了详尽的误差分析。
[关键词] 超声波测距 单片机 温度传感器

随着社会的发展,人们对距离或长度测量的要求越来越高。超声波测距由于其能进行非接触测量和相对较高的精度,越来越被人们所重视。本设计的超声波测距仪,可以对不同距离进行测试,并可以进行详尽的误差分析。

一、设计原理

超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。 通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C
式中 L——要测的距离
T——发射波和反射波之间的时间间隔
C——超声波在空气中的声速,常温下取为340m/s
声速确定后,只要测出超声波往返的时间,即可求得L。

二、超声波测距仪设计目标

测量距离: 5米的范围之内;通过LED能够正确显示出两点间的距离;误差小于5%。

三、数据测量和分析

1.数据测量与分析
由于实际测量工作的局限性,最后在测量中选取了一米以下的30cm、50cm、70cm、80cm、90cm、100cm 六个距离进行测量,每个距离连续测量七次,得出测量数据(温度:29℃),如表所示。从表中的数据可以看出,测量值一般都比实际值要大几厘米,但对于连续测量的准确性还是比较高的。
对所测的每组数据去掉一个最大值和最小值,再求其平均值,用来作为最终的测量数据,最后进行比较分析。这样处理数据也具有一定的科学性和合理性。从表中的数据来看,虽然对超声波进行了温度补偿,但在比较近的距离的测量中其相对误差也比较大。特别是对30cm和50cm的距离测量上,相对误差分别达到了5%和4.8%。但从全部测量结果看,本设计的绝对误差都比较小,也比较稳定。本设计盲区在22.6cm左右,基本满足设计要求。
2.误差分析
测距误差主要来源于以下几个方面:
(1)超声波发射与接收探头与被测点存在一定的角度,这个角度直接影响到测量距离的精确值;(2)超声波回波声强与待测距离的远近有直接关系,所以实际测量时,不一定是第一个回波的过零点触发;(3)由于工具简陋,实际测量距离也有误差。影响测量误差的因素很多,还包括现场环境干扰、时基脉冲频率等等。

四、应用分析

采用超声波测量大气中的地面距离,是近代电子技术发展才获得正式应用的技术,由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,在较恶劣的环境(如含粉尘)具有一定的适应能力。因此,用途极度广泛。例如:测绘地形图,建造房屋、桥梁、道路、开挖矿山、油井等,利用超声波测量地面距离的方法,是利用光电技术实现的,超声测距仪的优点是:仪器造价比光波测距仪低,省力、操作方便。
超声测距仪在先进的机器人技术上也有应用,把超声波源安装在机器人身上,由它不断向周围发射超声波并且同时接收由障碍物反射回波来确定机器人的自身位置,用它作为传感器控制机器人的电脑等等。由于超声波易于定向发射,方向性好,强度好控制,它的应用价值己被普遍重视。
总之,由以上分析可看出:利用超声波测距,在许多方面有很多优势。因此,本课题的研究是非常有实用和商业价值。

五、结论

本设计的测量距离符合市场要求,测量的盲区也控制在23cm以内。针对市场需求,本设计还可以加大发射功率,让测量的距离更加的远。在显示方面,也可以对程序做适当改动,使开始发射超声波时LED显示出温度值,到超声波回波接收到以后通过计算得出距离值时,LED自动切换显示距离值,这样在视觉效果上得到更加直观的了解。

参考文献:
[1]MCS一51/96系列单片机原理及应用(修订版)[M].北京:北京航空航天大学出版社.2002.46-170
[2]金篆芷王明时:现代传感器技术[M].电子工业出版社.1995.331—335
[3]MCS一51/96系列单片机原理及应用(修订版)[M].北京:北京航空航天大学出版社.2002.46-170
[4]超声波测距仪的设计[J].传感器技术.2002

Ⅶ 用c51单片机如何实现超声波测距控制程序(40khz)

//超声波模块程序
//Trig = P2^0
//Echo = P3^2
#include <reg52.h>
#define uchar unsigned char
#define uint unsigned int
//
void delay(uint z)
{
uint x,y;
for(x=z;x>0;x--)
for(y=110;y>0;y--);
}
//
void delay_20us()
{
uchar a ;
for(a=0;a<100;a++);
}

//***************************************************************
//显示数据转换程序
void display(uint temp)
{
uchar ge,shi,;
=temp/100;
shi=(temp%100)/10;
ge=temp%10;

wela=1;
P0=0xf7;
wela=0;
la=1;
P0=table[];
la=0;
delay(1);
la=1;
P0=0x00; //关位码
la=0;

wela=1;
P0=0xef;
wela=0;
la=1;
P0=table[shi];
la=0;
delay(1);
la=1;
P0=0x00; //关位码
la=0;

la=1;
P0=table[ge];
la=0;
wela=1;
P0=0xdf;
wela=0;
delay(1);
la=1;
P0=0x00; //关位码
la=0;

}
//***************************************************************
void main()
{
uint distance;
test =0;
Trig=0; //首先拉低脉冲输入引脚
EA=1; //打开总中断0
TMOD=0x10; //定时器1,16位工作方式
while(1)
{
EA=0; //关总中断
Trig=1; //超声波输入端
delay_20us(); //延时20us
Trig=0; //产生一个20us的脉冲
while(Echo==0); //等待Echo回波引脚变高电平
succeed_flag=0; //清测量成功标志
EA=1;
EX0=1; //打开外部中断0
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //计数溢出标志
TR1=1; //启动定时器1
delay(20); //等待测量的结果
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断0
if(succeed_flag==1)
{
time=timeH*256+timeL;
distance=time*0.172; //厘米
display(distance);
}
if(succeed_flag==0)
{
distance=0; //没有回波则清零
test = !test; //测试灯变化
}
}
}
//***************************************************************
//外部中断0,用做判断回波电平
void exter() interrupt 0 // 外部中断0是0号
{
timeH =TH1; //取出定时器的值
timeL =TL1; //取出定时器的值
succeed_flag=1;//至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器1中断,用做超声波测距计时
void timer1() interrupt 3 //
{
TH1=0;
TL1=0;
}
转http://blog.sina.com.cn/s/blog_4f8cdc9e0100g3e7.html
其实网上很多的,csdn 程序员都有的,在这里一般都得不到你要的东西,此程序仅供参考,具体的怎么写还得靠自己,网上的只能是借鉴,哪有一摸一样的啊,关键是吸收后在自己写。。。祝你好运,

Ⅷ 51单片机超声波程序显示问题

给你贴一个吧,显示部分的代码你需要修改一下(因为这个代码里面的数码管显示用不到段选位选) //超声波模块显示程序 #include <reg52.h> //包括一个52标准内核的头文件 #define uchar unsigned char //定义一下方便使...

阅读全文

与当代超声波程序怎么选相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59