Ⅰ 超声波声波短怎么办
波的衍射关系是 当波长和空隙的长度差不多或者比波长小的时候才可以观察到明显的衍射现象
但是超声波穿透性强是因为他的波长短,频率高,因此才具有很强的穿透性,跟衍射是不一样的
Ⅱ 关于超声波的工作频率和脉冲重复频率
超声波的工作频率就是:你给换能器的频率,比如2.5MHz的探头,你就必须给它2.5MHz信号。脉冲重复频率是:做检测类的,大都是脉冲工作的。你发射一个脉冲,等待回波,接收回波,检测完成。也就是你1秒钟检测几次。比如2.5MHz的探头,你是用来做测厚,你可以100mS检测一次,1S钟检测10次,你的脉冲重复频率就是10次。
如果往2.5MHz的探头,加1Khz的脉冲。能发射出去微弱的信号,正常发射出去的信号也是1KHz的。
Ⅲ 物理:什么是超声波脉冲红外线脉冲详细!
超声波脉冲是指 持续时间很短的超声波。超声波是一种频率很高的声波,人耳听不到,他能量很大,可以穿透物体,常用来做内部检查,比如B超、超声波探测仪。
红外线是一种不可见光,波长比红光大。人眼看不到。红外线脉冲就是指 持续时间很短红外线。 红外线一般用来加热,比如红外烤箱。还有遥感技术中也用到红外线。
Ⅳ 短脉冲是指什么是波长短还是脉冲宽度窄还是其他什么着…
我是做激光的,你说的短脉冲在我看其实是指频率,频率比较的即为长脉冲,当然脉宽也比较大.反之即为短脉冲,
Ⅳ :激发脉冲超声波的电脉冲一般是一个上升沿小于20纳秒的很尖很窄的脉冲。而从超声
激发超声波的脉冲要很尖,尖到100V以上。
要很窄,但没你说的那么窄。500ns是可以的。
而且负脉冲更好。
你想要问什么?
Ⅵ 关于超声波测距
是这样的,目前的超声波产生和接收器件大部分都是压电陶瓷(磁致伸缩虽然性能高,但应用并不方便)。
压电陶瓷的性能是这样的,你给出“一个”脉冲,它就产生一个阻尼震荡,声波反射回来后根据时间计算距离。
将上面做成循环,在宏观上从时间的角度看,它不就是一系列的方波吗?其实也应该是有一系列的回波,文献里没提罢了。
每执行一次循环体,就得到一个距离,如果不需要其它处理的话,将距离显示出来,这样你的仪器就能够“实时测距”了,^_^
汉语有的时候还是容易产生歧义的,希望这样解释对你有帮助。
超声波这方面的东西我做了两年了,其实声波很简单,它是机械波,比起电磁,还是简单了不少啊。
Ⅶ 什么是窄脉冲,宽脉冲,超声波频带
窄脉冲可以认为是一个冲击响应.比如一个脉冲宽度是1uS的电脉冲,就可以认为是窄脉冲.连续几个周期,那我们可以认为是宽脉冲.超声波频带是大部分是指换能器的工作带宽.当然也可以指你的工作频率范围.比如在水声通信领域,就经常讲到频带.比如我这个水声痛惜系统,我的调制频率是从20KHz~30KHz,那么我的工作的频带宽度就是10KHz.
Ⅷ 超声波脉冲的功效有哪些
超声波脉冲是超声波的一种
超声波在生活中的用途
超声应用 超声效应已广泛用于实际,主要有如下几方面: ①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。 ②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。 ③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域—— 声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
Ⅸ 关于超声波的
我们的耳朵只能分辨频率为二十至二万赫的声音,频率比人的听频范围高的声波就叫做超声波。不同的动物可听到的声波频率范围不尽相同。狗可以听到一些超声波,所以狗只训练员可以用超声波哨子呼唤狗儿。超声波对于蝙蝠更为重要,这种动物是靠超声波来「看」世界的!
蝙蝠先会发出一连串超声的尖叫声,声波遇到障碍物便会反射,就像我们向山谷拍手会听到回声一样。由于超声波的频率高,相对较少出现绕射现象,所以回声十分清晰。蝙蝠分析回声的方向和回传时间,便可以知道环境的精确图像。人们根据蝙蝠「看」事物的原理,发明了声纳探测器,用来测量水深。船只上的发射器先向海底发射超声波,再由另一些仪器接收和分析反射回来的讯息,从而得到整个海床的面貌。
医学的超声波扫描术可说是超声波最重要的应用。超声波扫描不涉及有害的辐射,远比 X-射线等检验工具安全,所以常用于产前检查 (右图)。医生会将一个发出高频超声波 (频率为1-5 兆赫) 的手提换能器,贴着母亲的肚皮进行扫描。声波到达各种身体组织的边界时会有不同程度的反射 (例如液体及软组织的边界、软组织及骨的边界)。接收器收到反射波,便可计算出反射的强度及反射面的距离,以分辨不同的身体组织,并得到胎儿的影像。接收器使用了压电的原理,把超声波所产生的压力转变成电子讯号,再输送到仪器分析。超声波扫描可以帮助医生量度胎儿的大小以确定产期,检查胎儿的性别、生长速度、头的位置是否正常向下、胎盘的位置是否正常、阳水是否足够,与及监察抽阳水的过程,以保障胎儿的安全等。此外,超声波扫描术也用于妇科检查,它可以帮助医生有效地把生长在乳房或卵巢的恶性组织分辨出来。
超声波扫描术的两个重要分支-多普勒超声波扫描术和立体超声波成像技术,更扩大了超声波在医学上的用途。
多普勒超声波扫描术已应用了颇长的时间,这技术利用了波动的多普勒效应。反射超声波物体的运动,会改变回声的频率;当物体正向着接收器移动时,频率便会升高,相反当物体正在远去时,频率便会降低。从回声的频率改变,仪器便可计算到物体的运动速度。多普勒超声波扫描术主要用于检查血液在心脏及主要动脉中的流动速度。血液的流动情况会以一个颜色的影像显示出来,不同的颜色代表不同的流速 (右图)。这有助医生及早发现胎儿先天性心脏毛病。
立体超声波成像技术是很新的技术。检查员首先从多个不同角度拍摄胎儿的二维超声波影像,然后利用计算机技术合成胎儿的立体影像。利用这技术可清晰地显示胎儿的样貌 ,甚至摄录到胎儿细致如踢脚或转身等动态,实在为准父母带来不少惊喜。外表的缺憾如兔唇、多指甚至细如斑痣等都可以清楚地显示出来。立体成像技术将会成为未来超声波技术研究的重点。
此外,高频的超声波带有强大的振动能。将超声波入射载满水的容器,再放入需要的清洗的对象,水的振动便可去除对象上的尘垢,而不需直接接触对象的表面。眼镜公司替我们洗眼镜时就是用这种方法。如果将高能超声波聚焦,能量甚至足以震碎石块,所以可以用来击碎体内结石,使患者免受手术之苦。
Ⅹ 什么叫长脉冲和短脉冲
短脉冲一般时间都是比较短的,通常用在跳闸条件或泵启停指令,一般就2-5s,长脉冲一般用不到,基本也就是时间长短不同,功能是一样的。
短脉冲信号一般用于关断型阀门,长脉冲信号一般用于带中停功能的关断门,因为短脉冲信号属于"发出不管型"。而长脉冲一般应面对一些需在开/关过程中需要在中间位置停止的关断型阀门。以利于系统的调整,也许有人会问为什么不用调节门而采用模拟量信号。那也许是因为调节门一般关断不是很严密的缘故。