⑴ 钢结构超声波探伤检测如何取样
应随机选取焊缝长度的20%检测。
建筑钢结构检测取样方法及数量;
第一部分:见证取样检测;
一、钢材质量;对属于下列情况之一的钢材,应对钢材进行化学成分分;
(1)国外进口钢材;
(2)钢材混批;
(3)板厚等于或大于40mm,且设计有Z向性能要;
(4)建筑结构安全等级为一级,大跨度钢结构中主要;
(5)设计有复验要求的钢材;
(6)对质量有疑义的钢材;
1、化学成分分析(主控项目);
(1)检验指标:
建 筑 钢 结 构 检 测 取 样 方 法 及 数 量
第一部分:见证取样检测
一、 钢材质量
对属于下列情况之一的钢材,应对钢材进行化学成分分析和力学性能的抽样复验:
(1) 国外进口钢材;
(2) 钢材混批;
(3) 板厚等于或大于40mm,且设计有Z向性能要求的厚板;
(4) 建筑结构安全等级为一级,大跨度钢结构中主要受力构件所采用的钢材;
(5) 设计有复验要求的钢材;
(6) 对质量有疑义的钢材。
1、化学成分分析(主控项目)
(1) 检验指标:碳、硅、锰、硫、磷及其他合金元素
(2) 依据标准:《钢和铁化学成分测定用试样的取样和制样方法》GB/T20066-2006 《建筑结构检测技术标准》GB/T50344-2004
(3)
取样方法及数量:钢材化学成分分析,可根据需要进行全成分分析或主要成分分析。所采用的取样方法应保证分析试样能代表抽样产品的化学成分平均值。分析试样应去除表面涂层、除湿、除尘、以及除去其他形式的污染。分析试样应尽可能避开孔隙、裂纹、疏松、毛刺、折叠或其他表面缺陷。制备的分析试样的质量应足够大,以便可能进行必要的复检验。对屑状或粉末状样品,其质量一般为100g。可采取钻、切、车、冲等方法制取屑状样品。不能用钻取方法制备屑状样品时,样品应该切小或破碎,然后用破碎机或振动磨粉碎。振动磨有盘磨和环磨。制取的粉末分析试样应全部通过规定孔径的筛。钢材化学成分的分析每批钢材取1个试样。
2、力学性能检验(主控项目)
(1) 检验指标:屈服点、抗拉强度、伸长率、冷弯、冲击功
(2) 依据标准:《钢及钢产品力学性能试验取样位置及试验制备》GB /T2975-1998 《建筑结构检测技术标准》GB/T50344-2004
(3) 取样方法及数量:应在外观及尺寸合格的钢材上取样,产品应具有足够大的尺寸。取样时应防止出现过热、加工硬化而影响力学性能。取样的位置及方向应符合GB
/T2975-1998附录A的规定。当工程没有与结构同批的钢材时,可在构件上截取试样,但应确保结构构件的安全。按每批钢材,拉伸试验取1个试样,冷弯试验取1个试样,冲击试验取3个试样。当被检钢材的屈服点或抗拉强度不满足要求时,应补充取样进行拉神试验。补充试验应将同类构件同一规格的钢材划为1批,每批抽样3个。
二、紧固件及网架节点连接质量
1、高强度大六角头螺栓连接副(主控项目)
高强度大六角头螺栓连接副出厂时要进行扭拒系数及机械性能试验,并且螺栓进场后要进行扭拒系数复验。
(1) 检验指标:扭矩系数(强制检验项目)、楔负载、螺栓实物最小拉力载荷、螺母保证载荷、螺母及垫圈硬度
(2) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
《钢结构用高强度大六角头螺栓、大六角头螺母、垫圈技术条件》GB/T1231-2006
(3)
取样方法及数量:同一性能等级、材料、炉号、螺纹规格、长度(当螺栓长度≤100mm时,长度相差≤15mm;螺栓长度>100mm时,长度相差≤20mm,可视为同一长度)、机械加工、热处理工艺、表面处理工艺的螺栓为同批;同一性能等级、材料、炉号、螺纹规格、机械加工、热处理工艺、表面处理工艺的螺母为同批;同一性能等级、材料、炉号、规格、机械加工、热处理工艺、表面处理工艺的垫圈为同批。分别由同批螺栓、螺母、垫圈组成的连接副为同批连接副。每3000套为一批,不足3000套视为一批,每种规格及批次取8套。送检的高强螺栓要保证出厂状态(出厂后3个月内),并且表面清洁、螺纹无损伤。
2、扭剪型高强度螺栓连接副(主控项目)
扭剪型高强度螺栓连接副出厂时要进行紧固预拉力及机械性能试验,螺栓进场后必须进行紧
固预拉力复验。
(1) 检验指标:紧固预拉力(强制检验项目)、楔负载、螺栓实物最小拉力载荷、螺母保证载荷、螺母及垫圈硬度
(2) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
《钢结构用扭剪型高强度螺栓连接副》GB/T3632-2008
(3) 取样方法及数量:同高强度大六角头螺栓
3、钢网架用高强度螺栓(一般项目)
钢网架用高强度螺栓出厂时要进行螺栓实物拉力载荷试验。对建筑结构安全等级为一级,跨度40m及以上的螺栓球节点钢网架结构,其连接高强度螺栓应进行表面硬度试验。
(1) 检验指标:螺栓实物拉力载荷、表面硬度
(2) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
《钢网架螺栓球节点用高强度螺栓》GB/T16939-1997
(3)
取样方法及数量:同一性能等级、材料、炉号、规格、机械加工、热处理及表面处理工艺的螺栓为同一批。对于≤M36的螺栓最大批量为5000只,对于>M36的螺栓最大批量为2000只。每批次及规格抽取8只。
4、高强度螺栓连接摩擦面(强制检验项目)
钢结构制作和安装单位应进行高强度螺栓连接摩擦面的抗滑移系数试验和复验,现场处理的构件摩擦面应单独进行摩擦面抗滑移系数试验。
(1) 检验指标:抗滑移系数
(2) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
《钢结构高强度螺栓连接的设计、施工及验收标准》JGJ82-1991
(3)
取样方法及数量:每2000吨为一批,不足2000吨视为一批,每种规格、批次及摩擦面处理方法取3组(6个芯板+6个侧板+12个高强螺栓)。钢板厚度要根据螺栓长度及工程中有代表性的部位确定,试件板面应平整,无油污,孔和板的边缘无飞边、毛刺,并且芯板厚度要保证摩擦面滑移前钢板始终处于弹性变形状态。抗滑移试件的加工尺寸及要求见附
录B。
5、网架节点承载力(主控项目)
对建筑结构安全等级为一级,跨度40m及以上的公共建筑钢网架结构,且设计有要求时,应按下列项目进行节点承载力试验。
(1) 检验指标:焊接球节点承载力、螺栓球节点承载力、杆件及焊缝承载力
(2) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
《网架结构工程质量检验评定标准》JGJ78-1991
(3)
取样方法及数量:焊接球节点必须按设计采用的与焊接球焊接成试件,检查数量为每个工程可取受力最不利的球节点以600只为一批,不足600只仍按一批,每批取3只为一组随机抽检。
螺栓球与高强度螺栓配合,检查数量为每个工程可取受力最不利的球节点以600只为一批,不足600只仍按一批,每批取3只为一组随机抽检。
钢管与封板或锥头焊接成试件,检查数量为每个工程可取受力最不利的杆件以300根为一批,不足300根仍按一批,每批取3根为一组随机抽检。
第二部分:现场检测
一、 焊接质量
1、焊缝外观质量检查(一般项目)
(1) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
(2)
取样方法及数量:每批同类构件抽查10%,且不应少于3件;被抽查构件中,每种焊缝按条数抽查5%,且不应少于1条;每条检查1除,总抽查数不应少于10处。
2、焊脚尺寸检查(主控项目)
T型接头、十字接头、角接接头等要求熔透的对接和角对接组合焊缝及设计有疲劳验算要求的吊车梁或类似构件的腹板与上翼缘连接焊缝要进行焊脚尺寸检查。
(1) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
(2) 取样方法及数量:同类焊缝抽查10%,且不应少于3条。
3、焊缝表面探伤(磁粉、渗透)(一般项目)
当外观检查焊缝表面质量有疑义时,采用磁粉或渗透探伤。
(1) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
(2)
取样方法及数量:每批同类构件抽查10%,且不应少于3件;被抽查构件中,每种焊缝按条数抽查5%,且不应少于1条;每条检查1除,总抽查数不应少于10处。
4、焊缝内部探伤(射线、超声)(强制检验项目)
设计要求全焊透的一级或二级焊缝需要进行超声波探伤进行内部缺陷的检验,超声波探伤不能对缺陷作出判断时,应采用射线探伤。
(1) 依据标准:《钢结构工程施工质量验收规范》GB50205-2001
(2) 取样方法及数量:每种类型焊缝按条数抽检3%,并不少于3条焊缝。探伤长度不应小于200mm。
⑵ 结构超声波要有多少周才能做
30—40天形成的是胎囊,40—50天形成的是胎芽和原始心管搏动,50—60天形成胎心,所以一般的做B超应该是在60天左右的时候做,这时就能够看到胎囊、胎芽、胎心是否正常。
⑶ 超声波的原理
超声波又称为环形usm
它的结构和原理
传统的马达都是基于电磁原理工作的,将电磁能量变换成转动能量。而usm则是基于利用超声波振动能量变换成转动能量的全新原理来工作的。
根据将超声波振动能量变换的方法来分,有三类usm:
1、驻波型(standing
wave
type);
2、行波型(traveling
wave
type);
3、振簧型(vibrating
reed
type).
canon
ef镜头中使用的usm,全部属于行波型。
环形usm的结构很简单:由具有弹性的定子和转子组成。
定子是一金属环,底部有压电陶瓷元件,上部均匀排列着梯形凸出物。
定子是用特殊材料制造的,它的热膨胀系数同压电陶瓷元件的一样,这样可以避免温度变化的影响。
转子是一个铝质环,通过凸缘状弹簧与定子结合在一起。由于铝材比较软,所以结合部位是经过特殊处理,增加其耐磨性能。
usm的基本特点:
1、具有低转速大扭矩的输出特性;
2、制动力矩大;
3、结构简单;
4、马达启动和制动的可控性非常好;
5、转动声音非常小,几乎无声。
canon环形usm除具备上述基本特点外,自身的特点:
6、高效率,低功耗;
7、环形的马达可以与镜身完美地结合;
8、低转速,特别适合镜头的af驱动;
9、转动速度可以在0.2rpm
~
80rpm范围内任意控制;
10、可以实现灵敏度可调的电子mf;
11、工作环境温度是:-30℃
~
+60℃。
现在基本使用的是usm-m1和usm-l1,usm-l2已经不再使用。
⑷ ai类似这种超声波效果怎么做出来的吗
用钢笔工具画一个类似于超声波的形状,然后用蒙版就可以了!
⑸ 什么叫结构性超声波
详细“结构性超声波”扫描 至于“绒毛球抽取术”(俗称‘抽绒毛’)功用与‘抽胎水’相同,可于怀孕11-14周期间进行。抽取绒毛前,医生会先为孕妇局部麻醉,然后再超声波监察下,用针管穿过腹部表皮直达胎盘,抽取胎盘组织做分析,此项诊断所引起的流产率则越约为1%。 普通产前超声波只是普查,并不是专用来检查胎儿有没有先天缺陷。想真正看到胎儿的每个细节,应在怀孕20-24周时,由专科医生进行‘结构性超声波’。超声波扫描可诊断结构性不正常的胎儿,例如无脑儿、脊柱裂、脑积水、侏儒等。
⑹ 塑胶件超声波结构
楼主你好,看你的问题应该是问的塑胶件的装配结构
塑胶件有以下几种装配结构:
1.打螺丝
左右胶件一边出孔,一边司筒出螺丝柱(最后柱与孔做成圆配六角)
打螺丝结构优点:成本低、效率高,装配结构稳定
缺点:外观问题,一般将螺丝设计在产品的非主要面
2.超声
左右胶件一边出超声线、一边出止口(最后是出双止口,另一边出超声线)
优点:效率高(比打螺丝结构效率更高),稳定
缺点:对胶件材质有要求,一般用于ABS、PS类硬胶,PVC、PP等极难超到,同时每次生产前调超声模时会有一定的胶件损耗
3.打胶水
在柱子上擦胶水,靠胶水使柱与司筒粘牢(一般做成紧配结构)
优点:操作方便,简易
缺点:外观方面控制难,员工操作时容易有溢胶导致外观不良;
结构不稳定,胶水打少时容易导致装配结构不稳定
成本太高,打胶水是最贵的成本,人工、胶水代价很大
其次常见的还有可装拆的结构,如冬菇头、冷冲、热压等等,从楼主你的问题我给你以下的建议:
1.你的胶件是不是ABS?是透明件还是非透明件? 如果是透明件就最好用超声,如果不是透明件看你的产品结构来定.如果做超声的话就最好做双止口,另一边起超声线,这样可以防止溢胶。
圆柱形的超生可以做,但如果没止口的话就会容易出现超声后错位、离隙等问题
四个小圆柱可以代替超声结构,但记得圆柱与司筒柱做成圆与六角,方便藏胶水,同时圆与六角成紧配,结构比较稳定
但是建议你如果产品有止口,外形不是很复杂,表面没有抛光且是ABS等硬胶的话能起超声就超声,成本、效率会快很多
有什么不明白的再问我吧,可以帮你解答
纯手写,非
⑺ 超声波检测混凝土裂缝的方式有哪些
摘 要】目前超声波技术被广泛应用于各种工程的质量检测上。超声波检测是混凝土非破损检测技术中的一个重要方面,特别是在检测混凝土内部缺陷与匀质性等方面非常有效。阐述超声波检测混凝土裂缝的原理与意义,介绍该方法涉及的主要声学参数和常用方法,并讨论超声波检测技术的发展趋势。
中国论文网 http://www.xzbu.com/6/view-3989382.htm
【关键词】超声波检测;混凝土结构;裂缝;工程质量
混凝土结构由于各种原因普遍存在裂缝。裂缝的出现会降低建筑物的抗渗能力,影响建筑物的使用功能,同时也会引起钢筋的锈蚀和混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力。因此,要对裂缝制定合理的检测方案,判定裂缝的性质,确定裂缝的危害性及制定相应的补救措施。
应用超声波检测混凝土裂缝是重要的混凝土结构无损检测方法之一。超声波检测是20世纪60年代发展起来的一种非破损性检测,其利用超声波传播速度及回弹值同混凝土抗压强度之间的相互联系来反映混凝土的抗压强度,并且可以利用超声波在混凝土中传播的时间(声时)和波幅值、频率值的变化来计算裂缝深度、确定内部裂缝的位置。该方法具有操作简单、快捷准确、费用低廉等优点,在混凝土工程中得到广泛的应用。
1超声波单面平测法检测原理和方法
1.1超声波单面平测法检测基本原理
将电—声换能器接触在混凝土表面,由发射换能器发射的超声波被接收换能器接收,超声波在混凝土中遇到裂缝时将产生绕射、反射和衰减。根据声时、波幅等参数变化,通过回归分析,由此判别和计算裂缝深度大小。
1.2超声波单面平测检测方法
当结构的裂缝部位有一个可测表面估计裂缝深度又不大于500mm时,可采用单面平测法。平测时应在裂缝的被测部位以不同的测距按跨缝和不跨缝布置测点,布置测点时应用钢筋混凝土雷达定位仪确定裂缝检测区域的钢筋位置,避开钢筋的影响进行检测,其检测步骤如下:
1)将T,R换能器置于裂缝附近同一侧,分别测量两个换能器内边缘间距li'=100mm,150mm,200mm,250mm……的声时值ti。由于超声波的实际传输距离要大于两个换能器内边缘间距,并且很难直接确定,为了求取的超声波传播声速值误差最小,应采用最小二乘方法来做线性回归,以便确定较为精确的超声波实际传输li距离以及不跨缝时混凝土中的超声波传播声速值,见图1。线性回归方程如下:
li=vti+a (1)
其中,v为回归系数,即为不跨缝时混凝土中的声速值,km/s;a为回归常数。
2)将T,R换能器置于以裂缝为轴线的对称两侧(见图2)。两换能器中心连线垂直于裂缝走向,以li'=100mm,150mm,200mm,250mm,300mm分别读取声时值,同时观察首波相位的变化。
3)各测点裂缝深度计算值按式(2)计算。
(2)
测试部位裂缝深度的平均值按式(3)计算。
其中,hci为裂缝深度;l为超声测距;ti为不跨缝测量的混凝土声时; 为跨缝测量的混凝土声时;v为不跨缝测量的混凝土声速。
1.3裂缝深度的确定方法
1)三点平均值法:在跨缝测试发现首波反相时,用该测距与其两个相邻测距的声时测量值分别计算hci,取三点hci的平均值作为该裂缝的深度hc。
2)平均值加剔除法:当跨缝测量难以发现首波反相时,可先求出各测距计算深度(hci)的平均值(mhc)。再将各测距li'与mhc相比较,若测距li'<mhc和li'>3mhc,则剔除hci,取余下hci的平均值作为该裂缝深度hc。
2超声波检测的主要声学参数
超声波在混凝土中的传播速度不仅与混凝土的弹性性质有关,还与其内部结构和组成成分关系密切。混凝土超声检测目前主要是采用“穿透法”,即用一发射换能器重复发射超声脉冲波,让超声波在所检测的混凝土中传播,然后由接收换能器接收,被接收到的超声波转化为电信号后经过超声仪放大显示于屏幕上,用超声仪测量接收到的超声波信号的声学参数。目前,在混凝土检测中常用的声学参数有声速(波速)、振幅、频率以及波形。
3超声波检测混凝土裂缝的常用方法
对混凝土浅裂缝深度50cm以下的超声波检测主要有tc—t0法和英国标准BS-4408法(如图3所示)。BS-4408法是以二换能器的边到边计算,tc-t0法是以二换能器的中到中计算。
4结语
在制作混凝土时,由于振捣不均匀会大大降低混凝土的强度,从而引起工程的隐患。初步的研究结果表明,用超声波对混凝土材料进行无损检测是一种非常有潜力的检测手段,有良好的发展空间。可以利用超声波法来检测混凝土试块在振捣后是否均匀,这样便保证了混凝土的质量,弥补了制作过程中的漏洞,加强了结构工程的可靠性,避免出现质量缺陷。由于混凝土的组成成分非常复杂,在成型过程中受到多种因素的影响,所以对超声波在混凝土中的传播理论还需深入研究,以使超声波检测混凝土缺陷的技术得到完善。
⑻ 超声波探伤方法和探伤标准
金属无损检测与探伤标准汇编
中国机械工业标准汇编 金属无损检测与探伤卷(上)(第二版)
一、通用与综合
GB/T 5616-1985 常规无损探伤应用导则
GB/T 6417-1986 金属溶化焊焊缝缺陷分类及说明
GB/T 9445-1999 无损检测人员资格鉴定与认证
GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求和缺陷分类
GB/T 14693-1993 焊缝无损检测符号
JB 4730-1994 压力容器无损检测
JB/T 5000.14-1998 重型机械通用技术条件 铸钢件无损探伤
JB/T 5000.15-1998 重型机械通用技术条件 锻钢件无损探伤
JB/T 7406.2-1994 试验机术语 无损检测仪器
JB/T 9095-1999 离心机、分离机锻焊件常规无损探伤技术规范
二、表面方法
GB/T 5097-1985 黑光源的间接评定方法
GB/T 9443-1988 铸钢件渗透探伤及缺陷显示迹痕的评级方法
GB/T 9444-1988 铸钢件磁粉探伤及质量评级方法
GB/T 10121-1988 钢材塔形发纹磁粉检验方法
GB/T 12604.3-1990 无损检测术语 渗透检测
GB/T 12604.5-1990 无损检测术语 磁粉检测
GB/T 15147-1994 核燃料组件零部件的渗透检验方法
GB/T 15822-1995 磁粉探伤方法
GB/T 16673-1996 无损检测用黑光源(UV-A)辐射的测量
GB/T 17455-1998 无损检测 表面检查的金相复制件技术
GB/T 18851-2002 无损检测 渗透检验 标准试块
JB/T 5391-1991 铁路机车车辆滚动轴承零件磁粉探伤规程
JB/T 5442-1991 压缩机重要零件的磁粉探伤
JB/T 6061-1992 焊缝磁粉检验方法和缺陷磁痕的分级
JB/T 6062-1992 焊缝渗透检验方法和缺陷迹痕的分级
JB/T 6063-1992 磁粉探伤用磁粉技术条件
JB/T 6064-1992 渗透探伤用镀铬试块技术条件
JB/T 6065-1992 磁粉探伤用标准试片
JB/T 6066-1992 磁粉探伤用标准试块
JB/T 6439-1992 阀门受压铸钢件磁粉探伤检验
JB/T 6719-1993 内燃机进、排气门 磁粉探伤
JB/T 6722-1993 内燃机连杆 磁粉探伤
JB/T 6729-1993 内燃机曲轴、凸轮轴 磁粉探伤
JB/T 6870-1993 旋转磁场探伤仪 技术条件
JB/T 6902-1993 阀门铸钢件液体渗透探伤
JB/T 6912-1993 泵产品零件无损检测磁粉探伤
JB/T 7411-1994 电磁轭探伤仪 技术条件
JB/T 7523-1994 渗透检验用材料 技术要求
JB/T 8118.3-1999 内燃机 活塞销 磁粉探伤技术条件
JB/T 8290-1998 磁粉探伤机
JB/T 8466-1996 锻钢件液体渗透检验方法
JB/T 8468-1996 锻钢件磁粉检验方法
JB/T 8543.2-1997 泵产品零件无损检测渗透检测
JB/T 9213-1999 无损检测 渗透检查 A型对比试块
JB/T 9216-1999 控制渗透探伤材料质量的方法
JB/T 9218-1999 渗透探伤方法
JB/T 9628-1999 汽轮机叶片 磁粉探伤方法
JB/T 9630.1-1999 汽轮机铸钢件 磁粉探伤及质量分级方法
JB/T 9736-1999 喷油嘴偶件、柱塞偶件、出油阀偶件 磁粉探伤方法
JB/T 9743-1999 内燃机 连杆螺栓 磁粉探伤技术条件
JB/T 9744-1999 内燃机零、部件 磁粉探伤方法
中国机械工业标准汇编 金属无损检测与探伤卷(中)(第二版)
三、辐射方法
GB/T 3323-1987 钢熔化焊对接接头射线照相和质量分级
GB/T 4835-1984 辐射防护用携带式X、γ辐射剂量率仪和监测仪
GB/T 5294-2001 职业照射个人监测规范 外照射监测
GB/T 5677-1985 铸钢件射线照相及底片等级分类方法
GB/T 9582-1998 工业射线胶片ISO感光度和平均斜率的测定(用X和γ射线曝光)
GB/T 10252-1992 钴-60辐照装置的辐射防护与安全标准
GB/T 11346-1989 铝合金铸件X 射线照相检验针孔(圆形)分级
GB/T 11806-2004 放射性物质安全运输规程
GB/T 11851-1996 压水堆燃料棒焊缝X射线照相检验方法
GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求和缺陷分类
GB/T 12604.2-1990 无损检测术语 射线检测
GB/T 12604.8-1995 无损检测术语 中子检测
GB/T 12605-1990 钢管环缝熔化焊对接接头射线透照工艺和质量分级
GB/T 13161-2003 直读式个人X和γ辐射剂量当量和剂量当量率监测仪
GB/T 13653-2004 航空轮胎X射线检测方法
GB/T 14054-1993 辐射防护用固定式X、γ辐射剂量率仪、报警装置和监测仪
GB/T 14058-1993 γ射线探伤机
GB/T 16357-1996 工业X射线探伤放射卫生防护标准
GB/T 16363-1996 X射线防护材料屏蔽性能及检验方法
GB/T 16544-1996 球形储罐γ射线全景曝光照相方法
GB/T 16757-1997 X射线防护服
GB/T 17150-1997 放射卫生防护监测规范 第1部分: 工业X射线探伤
GB/T 17589-1998 X射线计算机断层摄影装置影像质量保证检测规范
GB/T 17925-1999 气瓶对接焊缝 X射线实时成像检测
GB/T 18043-2000 贵金属首饰含量的无损检测方法 X射线荧光光谱法
GB/T 18465-2001 工业γ射线探伤放射卫生防护要求
GB/T 18871-2002 电离辐射防护与辐射源安全基本标准
GB/T 19348.1-2003 无损检测 工业射线照相胶片 第 1 部分:工业射线照相胶片系统的分类
GB/T 19348.2-2003 无损检测 工业射线照相胶片 第 2 部分:用参考值方法控制胶片处理
JB/T 5453-1991 工业Χ射线图像增强器 电视系统技术条件
JB/T 6440-1992 阀门受压铸钢件射线照相检验
JB/T 7260-1994 空气分离设备铜焊缝射线照相和质量分级
JB/T 7412-1994 固定式(移动式)工业Χ射线探伤仪
JB/T 7413-1994 携带式工业Χ射线探伤机
JB 7788-1995 500kv以下工业Χ射线探伤机 防护规则
JB/T 7902-1995 线型象质计
JB/T 7903-1999 工业射线照相底片观片灯
JB/T 8543.1-1997 泵产品零件无损检测 泵受压铸钢件射线检测方法及底片的等级分类
JB/T 8764-1998 工业探伤用Χ射线管 通用技术条件
JB/T 9215-1999 控制射线照相图像质量的方法
JB/T 9402-1999 工业Χ射线探伤机 性能测试方法
中国机械工业标准汇编 金属无损检测与探伤卷(下)(第二版)
四、声学方法
GB/T 1786-1990 锻制圆饼超声波检验方法
GB/T 2970-2004 厚钢板超声波检验方法
GB/T 3310-1999 铜合金棒材超声波探伤方法
GB/T 4162-1991 锻轧钢棒超声波检验方法
GB/T 5193-1985 钛及钛合金加工产品超声波探伤方法
GB/T 5777-1996 无缝钢管超声波探伤检验方法
GB/T 6402-1991 钢锻材超声波检验方法
GB/T 6519-2000 变形铝合金产品超声检验方法
GB/T 7233-1987 铸钢件超声探伤及质量评级方法
GB/T 7734-2004 复合钢板超声波探伤方法
GB/T 7736-2001 钢的低倍组织及缺陷超声波检验法
GB/T 8361-2001 冷拉圆钢表面超声波探伤方法
GB/T 8651-2002 金属板材超声板波探伤方法
GB/T 8652-1988 变形高强度钢超声波检验方法
GB/T 11259-1999 超声波检验用钢对比试块的制作与校验方法
GB/T 11343-1989 接触式超声斜射探伤方法
GB/T 11344-1989 接触式超声波脉冲回波法测厚
GB/T 11345-1989 钢焊缝手工超声波探伤方法和探伤结果分级
GB/T 12604.1-1990 无损检测术语 超声检测
GB/T 12604.4-1990 无损检测术语 声发射检测
GB/T 12969.1-1991 钛及钛合金管材超声波检验方法
GB/T 13315-1991 锻钢冷轧工作辊超声波探伤方法
GB/T 13316-1991 铸钢轧辊超声波探伤方法
GB/T 15830-1995 钢制管道对接环焊缝超声波探伤方法和检验结果的分级
GB/T 18182-2000 金属压力容器声发射检测及结果评价方法
GB/T 18256-2000 焊接钢管(埋弧焊除外) 用于确认水压密封性的超声波检测方法
GB/T 18329.1-2001 滑动轴承 多层金属滑动轴承结合强度的超声波无损检验
GB/T 18694-2002 无损检测 超声检验 探头及其声场的表征
GB/T 18852-2002 无损检测 超声检验 测量接触探头声束特性的参考试块和方法
JB/T 1581-1996 汽轮机、汽轮发电机转子和主轴锻件超声探伤方法
JB/T 1582-1996 汽轮机叶轮锻件超声探伤方法
JB/T 4008-1999 液浸式超声纵波直射探伤方法
JB/T 4010-1985 汽轮发电机用钢制护环超声探伤方法
JB/T 5093-1991 内燃机摩擦焊气门超声波探伤技术条件
JB/T 5439-1991 压缩机球墨铸铁零件的超声波探伤
JB/T 5440-1991 压缩机锻钢零件的超声波探伤
JB/T 5441-1991 压缩机铸钢零件的超声波探伤
JB/T 5754-1991 单通道声发射检测仪 技术条件
JB/T 6903-1993 阀门锻钢件超声波检查方法
JB/T 6916-1993 在役高压气瓶声发射检测和评定方法
JB/T 7367.1-2000 圆柱螺旋压缩弹簧 超声波探伤方法
JB/T 7522-1994 材料超声速度的测量方法
JB/T 7524-1994 建筑钢结构焊缝超声波探伤
JB/T 7602-1994 卧式内燃锅炉T 形接头超声波探伤
JB/T 7667-1995 在役压力容器声发射检测评定方法
JB/T 8283-1995 声发射检测仪器 性能测试方法
JB/T 8428-1996 校正钢焊缝超声波检测仪器用标准试块
JB/T 8467-1996 锻钢件超声波探伤方法
JB/T 8931-1999 堆焊层超声波探伤方法
JB/T 9020-1999 大型锻造曲轴的超声波检验
JB/T 9212-1999 常压钢质油罐焊缝超声波探伤
JB/T 9214-1999 A型脉冲反射式超声波系统工作性能测试方法
JB/T 9219-1999 球墨铸铁超声声速测定方法
JB/T 9630.2-1999 汽轮机铸钢件 超声波探伤及质量分级方法
JB/T 9674-1999 超声波探测瓷件内部缺陷
JB/T 10061-1999 A型脉冲反射式超声探伤仪 通用技术条件
JB/T 10062-1999 超声探伤用探头 性能测试方法
JB/T 10063-1999 超声探伤用1号标准试块 技术条件
JB/T 10326-2002 在役发电机护环超声波检验技术标准
五、电磁方法、泄漏和红外方法
GB/T 5126-2001 铝及铝合金冷拉薄壁管材涡流探伤方法
GB/T 5248-1998 铜及铜合金无缝管涡流探伤方法
GB/T 7735-2004 钢管涡流探伤检验方法
GB/T 11260-1996 圆钢穿过式涡流探伤检验方法
GB/T 11813-1996 压水堆核燃料棒的氦质谱检漏
GB/T 12604.6-1990 无损检测术语 涡流检测
GB/T 12604.7-1995 无损检测术语 泄漏检测
GB/T 12604.9-1996 无损检测术语 红外检测
GB/T 12606-1999 钢管漏磁探伤方法
GB/T 12969.2-1991 钛及钛合金管材涡流检验方法
GB/T 13979-1992 氦质谱检漏仪
GB/T 14480-1993 涡流探伤系统 性能测试方法
GB/T 15823-1995 氦泄漏检验
GB/T 17990-1999 圆钢点式(线圈)涡流探伤检验方法
⑼ 钢结构焊缝怎么用数字超声波探伤仪探伤
记得有绿线,黄线,粉线吧!
探伤前用什么白色粘稠液体【说什么工业胶水】
涂到焊缝和焊缝下面!拿你那个小块块在焊缝测量!
贴上去后会有线上下波动!貌似超绿线没啥事
好像黄线就不行了!重要的部位不行!例如行车梁上翼缘!
看那个线你得找专业人士
补充点,超声波是不是很准!在一起右上角的数字你可以留意下!全容透是0的,数字越大说明缝隙越大!建议你首先看一下超声波探伤原理!
那个线我也不是很懂!你注意看右上角的数字!