导航:首页 > 制冷设备 > 超级机床是什么样的

超级机床是什么样的

发布时间:2022-08-08 03:55:09

❶ 超精密加工机床床身设计主要采用何种材料,为什么

灰铸铁即可。超精密机床主要靠恒温、隔振等措施降低误差。

❷ 关于超高速机床的描述对么

事实上,高速铣床是一种新的技术与应用哲学:
要想要发挥出高速切削的效能,就必须个个环节的紧密配合,如果有其中一个环节搭配不佳,将无法发挥高速切削的效能。
高速的刀杆与刀具
高速的主轴
高动力的XYZ轴
高速的CNC控制器
高速的程序策略
高速切削时的情况
随着转速增加到一定程度时,则刀具的温度和切削力反而会逐渐下降。这种现象被用在了高速铣削技术中

❸ 对精密,超精密机床的数控系统有何要求

对于数控设备机械而言,在保证机械质量的同时,确保数控系统的稳定性也是其中重要因素。从目前而言,国内数控系统机床的研发主要面向高档市场,具备高速、高精、多轴联动复合加工功能的机床产品也逐渐受到业内青睐。然而,随着复合功能的增多,不可靠因素和故障隐患也随之增多,在数控系统机床运转和使用过程中发生故障的几率也大大增加。“由于高档数控系统复合功能密集,而且体积庞大、结构复杂、加工工况多变,所以可靠性问题也一直困扰着国内高档数控系统生产企业。”
对于这样的市场而言,在充满挑战的同时也给数控设备的相关企业造就了一定的机遇,通过企业的发展,产品的提升,提高市场的占有率。而其中,作为衡量数控系统可靠性的重要参数之一,平均无故障时间是数控机床制造商较为关注的参数。单从数控系统来看,国内产品的MTBF已经可以达到1万小时以上,最高可达到2万小时。
在未来,有效良好的数控系统也更是反应数控设备质量的重要保证,相信在未来,数控设备的发展也会越来越好。

❹ 传说中的数控机床长什么样

以上就是数控车铣复合机床,当然还有其他各种机床,如镗床,磨床,刨床,折弯机,冲压机,钻床等等,就不一一举例了。

❺ 超精密机床必须具备的关键部件有哪些

超精密机床的必有的基本部件包括以下几点
一、精密的直线或圆弧的滑动系统,就是俗称的导轨导套
二、精密的传动系统,例如精密的丝杠和丝冒
三、精密的主动系统,例如步进电机、伺服电机等
四、位置的精密检测机构,例如直线编码器,旋转编码器等
这些都是必不可少的,每一个都决定着整体的精细程度,一般的成套装置或现成的数控加工设备,其精度都已经达到0.001毫米了

❻ 超精密加工机床的设计要求与设计原则是什么

首先设计人员对于超精密的认识,要得到超精密的加工件,机床精度要高于加工件几个精度等级。具有高精度的机床的配件精度又要高于机床整体几个精度等级。其中机床的装配技术又是达到精度要求的至关重要因素。
对于一般人来体验,瑞士装配的机械手表,就可以看到装配技术的重要因素。

❼ 精密超精密加工机床关键技术分析

超精密加工机床的关键部件技术

哈尔滨工业大学 盖玉先 董申
1 引言

超精密加工机床的研制开发始于20世纪60年代。当时在美国因开发激光核聚变实验装置和红外线实验装置需要大型金属反射镜,因而急需开发制作反射镜的超精密加工技术。以单点金刚石车刀镜面切削铝合金和无氧铜的超精密加工机床应运而生。1980年美国在世界上首次开发了三坐标控制的M-18AG非球面加工机床,它标志着亚微米级超精密加工机床技术的成熟。日本的超精密加工机床的研制开发滞后于美国20年。从1981~1982年首先开发的是多棱体反射镜加工机床,随后是磁头微细加工机床、磁盘端面车床,近来则是以非球面加工机床和短波长X线反射镜面加工机床为主。德国、荷兰以及中国台湾的超精密加工机床技术也都处于世界先进水平。我国的超精密加工机床的研制开发工作虽起步比较晚,但经过广大精密工程研究人员的不懈努力,已取得了可喜的成绩。哈尔滨工业大学精密工程研究所研制开发的HCM-Ⅰ超精密加工机床,主要技术指标达到了国际水平。国外部分超精密加工机床和HCM-Ⅰ超精密加工机床的性能指标如表1所示。本文主要论述超精密加工机床的关键部件技术。 表1 国内外典型超精密车床性能指标汇总 型号(生产厂家) HCM-Ⅰ
(中国哈工大) M-18AG
(莫尔特殊机床,美国) Ultraprecision CNC machine
(东芝,日本) Ultraprecision Lathe
(IPT,德国)
主轴 径向跳动(μm) ≤0.075 ≤0.05(500r/min) ≤0.048
轴向跳动(μm) ≤0.05 ≤0.05(500r/min)
径向刚度(N/μm) 220 100
轴向刚度(N/μm) 160 200
导轨 Z向(主轴)直线度 <0.2μm/100mm ≤0.5μm/230mm 0.044μm/80mm
X向(刀架)直线度 <0.2μm/100mm ≤0.5μm/410mm 0.044μm/80mm
X、Z向垂直度(") ≤1 1
重复定位精度(μm) 1(全程)
0.5(25.4mm)
加工
工件
精度 形面精度(μm) 圆度:0.1 平面度:0.3 <0.1(P-V值) 0.1
表面粗糙度(μm) Ra0.0042 0.0075(P-V值) Ra0.002 0.002~0.005RMS
位置反馈系统分辨率(μm) 25 2.5 10
温控精度(℃) ≤0.004 ±0.006 ±0.1
隔振系统固有频率(Hz) ≤2 2
加工范围(mm) 320 356 650×250
2 主轴系统

超精密加工机床的主轴在加工过程中直接支持工件或刀具的运动,故主轴的回转精度直接影响到工件的加工精度。因此可以说主轴是超精密加工机床中最重要的一个部件,通过机床主轴的精度和特性可以评价机床本身的精度。目前研制开发的超精密加工机床的主轴中精度最高的是静压空气轴承主轴(磁悬浮轴承主轴也越来越受到人们的重视,其精度在迅速得到提高)。空气轴承主轴具有良好的振摆回转精度。主轴振摆回转精度是除去轴的圆度误差和加工粗糙度影响之外的轴心线振摆,即非重复径向振摆,属于静态精度。目前高精度空气轴承主轴回转精度可达0.05μm,最高可达0.03μm,由于轴承中支承回转轴的压力膜的均化作用,空气轴承主轴能够得到高于轴承零件本身的精度。例如主轴的回转精度大约可以达到轴和轴套等轴承部件圆度的1/15~1/20。日本学者研究表明,当轴和轴套的圆度达到0.15~0.2μm的精度时,可以得到10nm的回转精度,并通过FFT测定其所制造的精度最高的空气轴承主轴的回转精度为8nm。HCM-Ⅰ超精密加工机床的密玉石空气轴承主轴的圆度误差≤0.1μm。另外,空气轴承主轴还具有动特性良好、精度寿命长、不产生振动、刚性/载荷量具有与使用条件相称的值等优点。但是在主轴刚度、发热量与维护等方面需要做细致的工作。要做到纳米级回转精度的空气轴承主轴,除空气轴承的轴及轴套的形状精度达到0.15~0.2μm,再通过空气膜的均化作用来实现外,还需要保持供气孔流出气体的均匀性。供气孔数量、分布精度、对轴心的倾角、轴承的凸凹、圆柱度、表面粗糙度等的不同,均会影响轴承面空气流动的均匀性。而气流的不均匀是产生微小振动的直接原因,从而影响回转精度。要改善供气系统的状况,轴承材料宜选用多孔质材料。这是因为多孔质轴承是通过无数小孔供气的,能够改善压力分布,在提高承载能力的同时,改善空气流动的均匀性。多孔质材料的均匀性是很重要的。因为多孔质供气轴承材料内部的空洞会形成气腔,如不加以控制会引起气锤振动,为此必须对表面进行堵塞加工。 3 直线导轨

作为刀具和工件相对定位机构的直线导轨,是仅次于主轴的重要部件。对超精密加工机床的直线导轨的基本要求是:动作灵活、无爬行等不连续动作;直线精度好;在实用中应具有与使用条件相适应的刚性;高速运动时发热量少;维修保养容易。超精密加工机床中的常用导轨有V-V型滑动导轨和滚动导轨、液体静压导轨和气体静压导轨。传统的V-V型滑动导轨和滚动导轨在美国和德国的应用都取得了良好的效果。后两种都属于非接触式导轨,所以完全不必担心爬行的产生。从精度方面来考虑后两种也是最适宜的导轨。液体静压导轨由于油的粘性剪切阻力而发热量比较大,因此必须对液压油采取冷却措施。另外液压装置比较大,而且油路的维修保养也麻烦。气体静压导轨由于支承部是平面,可获得较大的支承刚度,它几乎不存在发热问题,如�畛醯纳杓坪侠恚�蛟诤笮�奈�薇Q�矫婕负醪换岱⑸�裁次侍狻5�匦胱⒁獾脊烀娴姆莱尽?掌�脊斓募湎督鑫��肝⒚祝��匀绱舜笮〉某景H庋凼强床坏降模�庋�某景<词故墙嗑皇乙膊荒芡耆����景B淙肟掌�脊烀婺诨嵋�鸬脊烀娴乃鹕恕W芴蹇蠢矗�掌�惭沟脊焓悄壳白詈玫牡脊欤��舨荒鼙Vし莱咎跫��蛐敫挠靡禾寰惭沟脊臁D壳翱掌�惭怪毕叩脊斓闹毕叨瓤纱?.1~0.2μm/250mm。

HCM-Ⅰ超精密加工机床上使用的即是空气直线导轨,其气浮面上的压力分布如图1所示。

图1 气浮面上的压力分布

通过安装调整空气静压导轨得出如下结论:(1)必须保证足够的排气通道,否则溜板将产生位置扰动,扰动量有时达数微米。(2)从理论上讲减小节流孔径和气膜厚度,可以提高溜板刚度,但带来工艺上的困难。用传统机械加工手段很难加工出<f0.15mm的小孔,需探求其它加工手段,也对防止小孔堵塞提出了更高的要求。(3)T型导轨的侧气浮块和下气浮块均由螺钉紧固,形成悬臂结构,当用螺钉紧固和有空气压力作用时,有可能产生变形,使气膜厚度不均匀以致于影响其性能。但经过计算证明,使用长螺钉时,气浮块和螺钉变形均稍大;使用短螺钉时,气浮块和螺钉的变形都在亚微米级,可忽略不计。

4 进给与微量进给系统

进给系统中最常用的是各种进给丝杠,在超精密加工机床中滚珠丝杠因其反向间隙小、传动效率高而得到了广泛的应用。精度更高的静压丝杠和摩擦驱动装置也逐渐用于超精密加工机床。

超精密加工机床的滚珠丝杠一般的精度等级为C0级。由于是闭环控制,利用最好等级的滚珠丝杠,可获得现行最高水平0.01μm的定位精度。滚珠丝杠不需要静压丝杠所必需的附属装置,是使用极为方便的丝杠。但作为亚微米级超精密加工机床的进给丝杠必须考虑到由于滚珠的转动和滚珠间的接触滑动有微小的振动及与滑动丝杠等相比较振动衰减特性差等问题。HCM-Ⅰ超精密加工机床采用的滚珠丝杠,在严格保证伺服电动机与丝杠、丝杠和螺母与底座和溜板的联接装配的基础上,加大溜板气浮面积、提高其气浮刚度,从而减小由于丝杠的误差对溜板运动精度的影响。并且丝杠螺母与溜板采用了浮动连接结构,从而减小了溜板起伏造成滚珠丝杠受压波动而引起的丝杠瞬间或永久的变形。同时也避免了由于滚珠丝杠本身弯曲引起的因丝杠旋转而造成的溜板运动误差,因此实现了运动的最小位移分辨率≤0.01μm。 >
静压丝杠副的丝杠与螺母由于不直接接触,而是有一层高压液体膜相隔,所以没有由于摩擦而引起的爬行和反向间隙,因此可以长期保持精度,进给分辨率更高;又由于油膜具有均化作用,可以提高进给精度,在较长的行程上可以达到纳米级的定位分辨率。但是静压丝杠装置较大,且必须有油泵、蓄压器、液体循环装置、冷却装置和过滤装置等众多的辅助装置,另外还存在环境污染问题。

摩擦驱动是通过摩擦把伺服电动机的回转运动转换成从动杆的直线运动,实现无间隙传动,其工作原理如图2所示。从微观上看,压紧轮与从动杆之间的油膜处于液体润滑状态,润滑油的剪断特性决定牵引系统。因而要选择系数较高的润滑油。压紧轮滚动时实现进给,进给分辨率取决于伺服电动机回转一周的步进数。采用摩擦驱动进给的一个重要问题是预压,若预压力过小,则接触面有可能产生滑动;若预压力过大,由于弹性变形,则很难实现正确的驱动。另外由于预压力的存在,还容易产生磨损问题。新的研究表明,用扭曲滚轮摩擦驱动可以实现埃(?)级定位。

图2 摩擦驱动原理图

各种进给丝杠及摩擦驱动特性如表2所示。

超精密加工机床中还广泛应用微量进给机构,以满足对更高定位精度和进给分辨率的要求。常用的方法有采用滚动丝杠进给和弹性进给并用的方法和由粗调和微调压电元件组合的方法。HCM-Ⅰ超精密加工机床采用的是压电式微量进给刀架。 表2 各种进给机构特性表 种类 优点 缺点 定位精度
进给丝杠 滑动
丝杠 制造容易,但需有研磨加工技术,衰减性好 需注意爬行 经仔细研磨加工后定位精度为0.01μm
前加工需达到0.1μm
滚珠
丝杠 已有规格化,容易搞到(C0)级 衰减性不好,
需注意爬行,
注意微小振动 最高可达0.01 μm
前加工需达到0.1μm
液体静
压丝杠 精度高,衰减性小 装置大,辅助设备多和维护难,油污染 相当好的定位精度为0.01μm,通常是
0.03 μm
气体静
压丝杠 精度高,维护容易 加工难 0.01μm
摩擦驱动 精度高,结构简单 需要适宜的预压和管理 当前的目标是0.01μm
压电元件 超微细的分辨率(亚纳米,nm) 行程微小(几微米~十几微米) nm,

5 环境条件

超精密加工的环境条件有三。其一是污染,超精密加工机床必须置于洁净的超净室内才能充分发挥其优势。室内的洁净度以一立方英尺中0.5μm以上的灰尘的数量表示。作为超精密加工机床的工作环境应为20000~3000级以下。

其二是振动。环境振动的干扰不仅会引起机床本体的振动,更主要的是会引起切削刀具与被加工零件间的相对振动位移,后者将直接反映到被加工零件的精度和表面质量上。因此超精密加工机床必须设置性能优异的隔振装置。目前国外超精密加工机床中,大多数采用以空气弹簧为隔振元件的隔振系统,并取得了较好的隔振效果。这主要是因为空气弹簧在具有较大承载能力的同时,具有较低的刚度。弹簧的低刚度可使隔振系统获得较低的固有频率,远离环境干扰频率,提高隔振效果。经理论分析研究和计算比较,HCM-Ⅰ超精密加工机床采用了直筒约束膜式结构,并取内、外变角均为0°。这样不仅弹簧刚度的线性度好,而且结构简单,便于模具的制造以及装置的安装和调整。

表3 提高超精密加工精度的计划目标 误差原因 日本精度(μm) POMA计划值(μm)
位置检测精度
定位精度
偏摆、俯仰、倾斜
直线度
轴向跳动
径向跳动
主轴的延伸
主轴驱动
热的影响
工件的装夹
形状精度(综合精度) 0.005
0.005
(0.05")
0.02
0.005
0.005
0.025
0.01
0.025
0.025
0.05 0.05
0.01
0.02
0.02
0.02
0.02
0.05
0.01
0.05
0.05
0.1
注:POMA是在将直径为800mm的大型非球面反射镜的形状精度提高到0.1μm的前提下出来的。
p>其三是温度。超精密加工机床的加工必须在恒温室内进行,加工过程中温度的变化,会造成机床运动精度下降,不能获得所定的加工精度。为了解决这一问题,通常从两个方面入手,一是选择合适的部件材料,超精密加工机床中使用的和候选的材料有氧化铝陶瓷、铸铁、钢、殷钢、花岗岩、树脂混凝土和零膨胀玻璃。从实际出发,HCM-Ⅰ超精密加工机床几乎全部采用花岗岩。二是保持温度的恒定控制。在总结国内外经验之后,哈尔滨工业大学提出了“有效冷流速率”的概念,在此基础上进行的超精密恒温供油系统的温控精度达到了世界先进水平。
6 结束语

亚微米级超精密机床HCM-Ⅰ的诞生,标志着我国的超精密加工研究跨入了国际行列。但它毕竟还没有走出实验室,没有商品化,要赶上国际先进水平还需加倍的努力。表3列出的是美国POMA的精度目标值和日本学者认为的今后精度目标值。

图形请参照此网站。
http://www.diamt.net.cn/xjzzjs/gjjs/process/up/up060601_2.asp

❽ 世界上什么样的车床最大

重量在10吨或以上单机重在100~300kN之间的机床。数控机床是集机械、电气、液压、气动、微电子和信息等多项技术为一体的机电一体化产品。

机床分为横梁移动和横梁固定型,简称“动梁”、“定梁”,工作台直径由Ф1000mm至Ф5700mm,最大回转直径由Ф1250mm至Ф6300mm,最大切削直径由Ф1250mm至Ф6300mm ,最大工件高度由600mm至4000mm。

具体型号按加工范围由小到大:动梁分为:GTC16090、GTC20090、GTC250110、GTC300125、GTC350160、GTC400160、GTC500200、GTC630200定梁分为:GTC12560、GTC25060、GTC35060、GTC38075、GTC40060、GTC45060、GTC450140。



(8)超级机床是什么样的扩展阅读:

古代的车床是靠手拉或脚踏,通过绳索使工件旋转,并手持刀具而进行切削的。1817年,另一位英国人罗伯茨采用了四级带轮和背轮机构来改变主轴转速。为了提高机械化自动化程度,1845年,美国的菲奇发明转塔车床。1848年,美国又出现回轮车床1873年,美国的斯潘塞制成一台单轴自动车床,不久他又制成三轴自动车床。

❾ 世界上第一台超精密机床是哪里制造的

应该 是美国 美国从50年代就开始研究超精密机床 虽然英国商用机床不咋地 但是英国超精密机床还是甩开德国几条街 下面是业界公认的评述

1984年,美国著名的劳伦斯·利弗莫尔国家实验室研制出一台大型光学金刚石车床(Large Optics DiamondTurning Machine,LODTM),至今仍代表了超精密加工设备的最高水平,其创造的纪录至今无人能及!

英国Cranfield大学的精密工程研究所该所研制的ORGM2500六轴数控超精密磨床至今仍和LODTM并称超精密加工领域的2面红旗

如果以金刚石车床而言,LLNL可以算第一;但以大型超精密机床而言,公认是OAGM2500。
此外Nanocenter250、Nanocenter600非球面光学零件车床和大型超精密金刚石镜面车床也是该所的经典之作
OAGM2500大型CNC超精密磨床是为美国的Kodak-Rochester开发的加工大型离轴非球面光学零件的机床

阅读全文

与超级机床是什么样的相关的资料

热点内容
仪表颜色怎么切换凌志es 浏览:349
摄像师用什么机械硬盘好 浏览:1000
阀门怎么可以接到工地的项目 浏览:254
扶梯扶手带速度检测装置 浏览:435
石家庄微型电动工具那里友买 浏览:159
实验室抽滤装置一晚上没关 浏览:945
ppr全塑料阀门开关处漏水怎么办 浏览:150
煤气阀门帮手 浏览:460
百得苏州电动工具地址 浏览:376
农村用最小型机械有哪些 浏览:485
船舶尾轴装置课程设计 浏览:792
包子馒头店需要什么设备多少钱 浏览:644
dmg设备在德国什么地方 浏览:585
机床怎么调运行速度 浏览:134
燃气阀门开关如何用 浏览:424
北京申利达阀门厂招聘 浏览:60
怎么确定铸造毛坯 浏览:359
恒通阀门管件制造公司怎么样 浏览:989
三个时间的机械表怎么调 浏览:883
乐至五金市场在哪 浏览:649