1. 什么是电气设备的动、热稳定电流
峰值电流,限流型的可不校验动稳定!
2. 什么叫做热稳定性
热稳定性 thermal stability。物体在温度的影响下的形变能力,形变越小,稳定性越高。
试样在特定加热条件下,加热期间内一定时间间隔的粘度和其它现象的变化。
在建筑学方面指:在周期性热作用下,围护结构或房间抵抗温度波动的能力。
电器的热稳定性是指电器在指定的电路中,在一定时间内能承受短路电流(或规定的等值电流)的热作用而不发生热损坏的能力。
在化学方面,反映物质在一定条件下发生化学反应的难易程度。物质的热稳定性与元素周期表有关,在同周期中,氢化物的热稳定性从左到右是越来越稳定,在同主族中的氢化物的热稳定性则是从下到上越来越稳定,也就是非金属性越强的元素,其氢化物的热稳定性越稳定。
在生物方面,热稳定性指的是DNA碱基中G与C之间形成3个氢键而A与T之间形成2个氢键,氢键数越多,其DNA分子的热稳定性越好。
3. 数控机床的特点有哪些
1.适应性强 数控机床上加工新工件时,只需重新编制新工件的加工程序,就能实现新工件的加工。数控机床加工工件时,只需要简单的夹具,不需要制作成批的工装夹具,更不需要反复调整机床,因此,特别适合单件、小批量及试制新产品的工件加工。对于普通机床很难加工的精密复杂零件,数控机床也能实现自动化加工。 2.加工精度高 数控机床是按数字指令进行加工的,目前数控机床的脉冲当量普遍达到了0.001mm,而且进给传动链的反向间隙与丝杠螺距误差等均可由数控装置进行补偿,因此,数控机床能达到很高的加工精度。对于中、小型数控机床,定位精度普遍可达0.03mm,重复定位精度为0.0lmm。此外,数控机床的传动系统与机床结构都具有很高的刚度和热稳定性,制造精度高,数控机床的自动加工方式避免了人为的干扰因素,同一批零件的尺寸一致性好,产品合格率高,加工质量十分稳定。 3.生产效率高 工件加工所需时间包括机动时间和辅助时间、数控机床能有效地减少这两部分时间。数控机床的主油转速和进给量的调整范围都比普通机床设备的范围大,因此数控机床每一道工序都可选用最有利的切削用量;从快速移动到停止采用了加速、减速措施,既提高运动速度,又保证定位精度,有效地降低机动时间。数控设备更换工件时.不需要调整机床,同一批工件加工质量稳定,无需停机检验,辅助时间大大缩短。特别是使用自动换刀装置的数控加工中心,可以在同一台机床上实现多道工序连续加工,生产效率的提高更加明显。 4.劳动强度低 数控设备的工作是按照预先编制好的加工程序自动连续完成的.操作者除输入加工程序或操作键盘、装卸工件、关键工序的中间测量及观看设备的运行之外,不需要进行繁琐、重复手工的操作,这使工人的劳动条件大为改善, 5.良好的经济效益 虽然数控设备的价格昂贵,分摊到每个工件上的设备费用较大,但是使用数控设备会节省许多其它费用。特别是不需要设计制造专用工装夹具,加工精度稳定,废品率低,减少调 度环节等,所以整体成本下降,可获得良好的经济效益。 6.有利于生产管理的现代化 采用数控机床能准确地计算产品单个工时,合理安排生产。数控机床使用数字信息与标准代码处理、控制加工,为实现生产过程自动化创造了条件。并有效地简化了检验、工夹具和半成品之间的信息传递。
4. 什么是奥氏体稳定化现象热稳定化和机械稳定化受哪些举例因素的影响
因冷却速度较慢或在冷却过程中停留引起奥氏体稳定性提高,而使马氏体转变迟滞的现象,称为奥氏体的热稳定化。
热稳定化受冷却过程的温度曲线(淬火、回火)影响;
机械稳定化受加工工艺(锻压、冲压)和温度影响。
5. 什么是动稳定校验什么是热稳定校验
1、动稳定校验:校验短路电流的冲击电流不应超过设备允许的峰值
2、热稳定校验:当短路电流通过所选的电气设备时,其热效应不应该超过允许值
6. 机床主轴的温升和热变形都有哪些特点
机床主轴的温升和热变形的特点:
通常情况下,机床主轴部件在工作过程中,会因摩擦和搅油等能量损耗而放出热量。当发热使主轴部件接受的热量等于散出的热量时,达到热平衡状态,这个过程所需的时间是主轴部件的表面积、表面传热系数,比热容和质量的函数。
主轴部件的温升包含了主轴箱内部相关零件如主轴、轴承、传动齿轮、箱体等的温升。研究表明,主轴部件温升对机床热变形起主导作用,温升对机床正常工作和加工精度也会产生不同的影响。
首先,主轴部件的温升使各部分零件温度随时间变化,从而影响被加工工件的尺寸;同时,温升也使轴承间隙发生变化,进而影响加工精度。温升使温度分布不均匀,造成各零件或零件各部分之间的相互位置关系发生变化,从而造成零件的位移或扭曲。
减少主轴部件的热变形,可以从减少热源、散热、使温升稳定并分布均匀等方面着手。因此,主轴在最高转速运转下达到稳定温度时,滑动轴承温度不得超过60℃,滚动轴承温度不得超过70℃;高精度机床,如坐标镗床主轴轴承的温度不得超过室温10℃。
选择优质的机床主轴本身就具有很多优越性,同时控制好其使用过程中的温升,更能使得机床主轴保持良好工作状态而表现出优异的性能,有助于机床更好的运转,从而发挥更大的用途。
众所周知,电主轴根据应用场合的不同可以分为不同的类型,主要包括了有磨削用、铣削用、车削用、拉碾用、钻削用、加工中心用、机械式主轴、皮带传动主轴、特种旋转试验主轴等。
所以在选择电主轴时,一定要关注对应的应用场合,不同的应用场合的接口是不同的;另外一定要弄清楚工况的功率要求,以及在此功率下对应的转速,这一点很关键,因为同样是1kW,在额定1000转和10000转的要求下电主轴的外形尺寸是相差很多的,对于电主轴设计的难度也是不同的,所以工况一定要准确。
另一个提醒,刀具的接口一定要明确,这也是有原则的,一般情况下BT50的接口转速只能在8000rpm以下的电主轴中使用,BT40的接口可以在18000rpm下的电主轴中使用,如果要更高的转速,刀具接口需要选择相应的HSK等高速刀具接口,数控铣削电主轴上配用的ER弹簧夹头或者SD弹簧夹头也有一定的许用最高转速限制。
以磨削用永磁同步电主轴来说,一般有恒扭矩设计的电机、恒功率设计的电机、恒扭矩恒功率混合设计的电机。客户根据需要可选择不同类型的电机。主要考虑因素有轴承最高转速;轴承最大承载能力;大砂轮磨削最高许用线速度和小砂轮最低许用线速度;电主轴的工作能力和效率潜力等。
另外,磨削用电主轴的电机参数制式通常标注S6工作制式,有S6-40%、S6-60%等几种,磨削时一个工件的磨削拍节通常包括,快速进刀、磨削、退刀、修砂轮等几个步骤,电机功率的消耗不是恒定的负载,而且在磨削用电主轴电机的设计上我们通常要提高其过载能力,这样设计电主轴的目的是为了满足用户在一定的常用转速范围内均可以较好的使电主轴工作。
7. 机床静态精度都包含哪些内容简介
机床静态精度是指机床的几何精度、运动精度、传动精度、定位精度等在空载条件下检测的精度。
一、几何精度
机床的几何精度是指机床某些基础零件工作面的几何精度,它指的是机床在不运动(如主轴不转,工作台不移动)或运动速度较低时的精度.它规定了决定加工精度的各主要零、部件间以及这些零、部件的运动轨迹之间的相对位置允差。例如,床身导轨的直线度、工作台面的平面度、主轴的回转精度、刀架溜板移动方向与主轴轴线的平行度等。在机床上加工的工件表面形状,是由刀具和工件之间的相对运动轨迹决定的,而刀具和工件是由机床的执行件直接带动的,所以机床的几何精度是保证加工精度最基本的条件。
二、传动精度机床的传动精度是指机床内传动链两末端件之间的相对运动精度。这方面的误差就称为该传动链的传动误差。例如车床在车削螺纹时,主轴每转一转,刀架的移动量应等于螺纹的导程。但是,实际上,由于主轴与刀架之间的传动链中,齿轮、丝杠及轴承等存在着误差,使得刀架的实际移距与要求的移距之间有了误差,这个误差将直接造成工件的螺距误差。为了保证工件的加工精度,不仅要求机床有必要的几何精度,而且还要求内传动链有较高的传动精度。
三、定位精度
机床定位精度是指机床主要部件在运动终点所达到的实际位置的精度。实际位置与预期位置之间的误差称为定位误差。对于主要通过试切和测量工件尺寸来确定运动部件定位位置的机床,如卧式车床、万能升降台铣床等普通机床,对定位精度的要求并不太高。但对于依靠机床本身的测量装置、定位装置或自动控制系统来确定运动部件定位位置的机床,如各种自动化机床、数控机床、坐标测量机等,对定位精度必须有很高的要求。
机床的几何精度、传动精度和定位精度通常是在没有切削载荷以及机床不运动或运动速度较低的情况下检测的,故一般称之为机床的静态精度。静态精度主要决定于机床上主要零、部件,如主轴及其轴承、丝杠螺母、齿轮以及床身等的制造精度以及它们的装配精度。
四、工作精度
静态精度只能在一定程度上反映机床的加工精度,因为机床在实际工作状态下,还有一系列因素会影响加工精度。例如,由于切削力、夹紧力的作用,机床的零、部件会产生弹性变形在机床内部热源(如电动机、液压传动装置的发热,轴承、齿轮等零件的摩擦发热等)以及环境温度变化的影响下,机床零、部件将产生热变形由于切削力和运动速度的影响,机床会产生振动机床运动部件以工作速度运动时,由于相对滑动面之间的油膜以及其他因素的影响,其运动精度也与低速下测得的精度不同所有这些都将引起机床静态精度的变化,影响工件的加工精度。机床在外载荷、温升及振动等工作状态作用下的精度,称为机床的动态精度。动态精度除与静态精度有密切关系外,还在很大程度上决定于机床的刚度、抗振性和热稳定性等。目前,生产中一般是通过切削加工出的工件精度来考核机床的综合动态精度,称为机床的工作精度。工作精度是各种因素对加工精度影响的综合反映。
8. 数控机床的加工特点有哪些
数控机床以其精度高、效率高、能适应小批量多品种复杂零件的加工等优点,在机械加工中得到日益广泛的应用。概括起来,数控机床的加工有以下几方面的优点。
(1)适应性强。适应性即所谓的柔性,是指数控机床随生产对象变化而变化的适应能力。在数控机床上改变加工零件时,只需重新编制程序,输入新的程序后就能实现对新的零件的加工;而不需改变机械部分和控制部分的硬件,且生产过程是自动完成的。这就为复杂结构零件的单件、小批量生产以及试制新产品提供了极大的方便。适应性强是数控机床最突出的优点,也是数控机床得以生产和迅速发展的主要原因。
(2)精度高,质量稳定。数控机床是按数字形式给出的指令进行加工的,一般情况下工作过程不需要人工干预,这就消除了操作者人为产生的误差。在设计制造数控机床时,采取了许多措施,使数控机床的机械部分达到了较高的精度和刚度。数控机床工作台的移动当量普遍达到了0.01~0.0001mm,而且进给传动链的反向间隙与丝杠螺距误差等均可由数控装置进行补偿,高 档数控机床采用光栅尺进行工作台移动的闭环控制。数控机床的加工精度由过去的±0.01 mm提高到±0.005mm甚至更高。定位精度九十年代初中期已达到±0.002mm~±0.005mm。此外,数控机床的传动系统与机床结构都具有很高的刚度和热稳定性。通过补偿技术,数控机床可获得比本身精度更高的加工精度。尤其提高了同一批零件生产的一致性,产品合格率高,加工质量稳定。
(3)生产效率高。零件加工所需的时间主要包括机动时间和辅助时间两部分。数控机床主轴的转速和进给量的变化范围比普通机床大,因此数控机床每一道工序都可选用最有利的切削用量。由于数控机床结构刚性好,因此允许进行大切削用量的强力切削,这就提高了数控机床的切削效率,节省了机动时间。数控机床的移动部件空行程运动速度快,工件装夹时间短,刀具可自动更换,辅助时间比一般机床大为减少。
数控机床更换被加工零件时几乎不需要重新调整机床,节省了零件安装调整时间。数控机床加工质量稳定,一般只作首件检验和工序间关键尺寸的抽样检验,因此节省了停机检验时间。在加工中心机床上加工时,一台机床实现了多道工序的连续加工,生产效率的提高更为显著。
(4)能实现复杂的运动。普通机床难以实现或无法实现轨迹为三次以上的曲线或曲面的运动,如螺旋桨、汽轮机叶片之类的空间曲面;而数控机床则可实现几乎是任意轨迹的运动和加工任何形状的空间曲面,适应于复杂异形零件的加工。
(5)良好的经济效益。数控机床虽然设备昂贵,加工时分摊到每个零件上的设备折旧费较高。但在单件、小批量生产的情况下,使用数控机床加工可节省划线工时,减少调整、加工和检验时间,节省直接生产费用。数控机床加工零件一般不需制作专用夹具,节省了工艺装备费用。数控机床加工精度稳定,减少了废品率,使生产成本进一步下降。此外,数控机床可实现一机多用,节省厂房面积和建厂投资。因此使用数控机床可获得良好的经济效益。
(6)有利于生产管理的现代化。数控机床使用数字信息与标准代码处理、传递信息,特别是在数控机床上使用计算机控制,为计算机辅助设计、制造以及管理一体化奠定了基础