导航:首页 > 制冷设备 > 机床电器发生故障应由什么来排除

机床电器发生故障应由什么来排除

发布时间:2022-07-22 02:38:03

⑴ 电气设备故障常以什么来表现

一、机床电气故障的种类
在运行中可能会受到不利因素的影响,如电器动作时的机械振动、因过电流使电器元件绝缘老化、电弧烧灼、自然磨损、环境温度和湿度的影响、有害气体的侵蚀、元器件的质量及自然寿命等原因,使电气线路不可避免地出现各种各样的故障。
机床电器故障可分为两大类:一类是有明显的外表特征且容易发现的故障,如电动机和电器元件的过热、冒烟、打火和发出焦糊味等;另一类是没有外表特征而较隐蔽的故障,这种故障大多出现在控制电路,如机械动作失灵,触头接触不良、接线松脱以及个别零件损坏等。
电气线路越复杂,出现故障的概率越大。在遇到较隐蔽且查找比较困难的故障时,常需要借助一些仪表和工具。另外,许多机床常常是机械、液压等的联合控制,因此要求维修人员不仅要熟悉、掌握一定的电气知识,还需要掌握机械、液压等方面的知识。
二、故障的排除方法
1 、故障调查机床一旦发生故障,维修人员应及时到现场调查研究,以便查找故障。
l )向该机床操作者了解故障现象、发生的前后情况以及发生的次数。如是否有冒烟、打火、异常声音和气味,是否有操作不当和控制失常等。
2 )查看电气设备,如观察熔断器的熔体是否熔断,有无电器元件烧毁、绝缘有无烧焦、线路有无断线、螺钉是否松动等。
3 )听一听各电器元件在运行时有无异常声音,如打火声、电机的嗡嗡声等。
4 )用手触摸电器元件和设备,检查有无过热和振动等异常现象。如温度上升很快,应切断电源并及时用手摸电动机、变压器和电磁线圈等一些电器元件,即可发现过热元件。
2、确定故障范围根据故障调查结果,分析电气原理图,缩小检查范围,从而确定故障所在部位。然后,再进一步检查,就能发现故障点。如照明或信号灯不亮,可很容易判断故障所在的电路,然后,在不通电情况下用仪表(如万用表的欧姆档)检查其所在线路,就能迅速找到故障点;再如,若机床的主轴不转,按起动按钮,观察控制主轴电动机的接触器是否吸合,若吸合而电动机不转,说明故障在主电路;若不吸合则说明故障在控制电路,在此判断的基础上,再作进一步检查,就可找到故障所在位置。
3 .查找故障点对一些有外表特征的故障,通过外表检查,就能容易发现故障点。但那些没有明显外表特征的故障。常常需作进一步的查找,方能找出故障点。借助电工仪表和工具,这是查找电气故障非常有效的方法。如用万用表的欧姆档(应断电),测量电气元件有无短路、断路;用万用表的电压档,测量线路的电压是否正常;用钳形电流表检查电动机的起动电流大小;验电笔检查是否有电等。由于机床有液压、机械等传动装置,所以在检查、判断故障时,应注意检查液压、机械等方面的故障。以上所介绍的是查找、排除机床电气线路故障的一般方法,实际中应根据故障情况灵活运用,并通过具体实践,不断总结积累经验。
http://www.bjxkrd.com

⑵ 5. 机床电气线路发生故障后的一般检查方法和步骤是什么

数控机床常用的故障检测方法:
通常按照:现场故障的诊断与分析、故障的测量维修排除、系统的试车这三大步进行。
数控机床故障诊断
在故障诊断时应掌握以下原则:
先外部后内部:
现代数控系统的可靠性越来越高,数控系统本身的故障率越来越低,而大部分故障的发生则是非系统本身原因引起的。由于数控机床是集机械、液压、电气为一体的机床,其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查。尽量避免随意地启封、拆卸,否则会扩大故障,使机床丧失精度、降低性能。系统外部的故障主要是由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。
先机械后电气:
一般来说,机械故障较易发觉,而数控系统及电气故障的诊断难度较大。在故障检修之前,首先注意排除机械性的故障。
先静态后动态:
先在机床断电的静止状态,通过了解、观察、测试、分析,确认通电后不会造成故障扩大、发生事故后,方可给机床通电。在运行状态下,进行动态的观察、检验和测试,查找故障。而对通电后会发生破坏性故障的,必须先排除危险后,方可通电。
先简单后复杂:
当出现多种故障互相交织,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。
1.直观法:这是一种最基本的方法。维修人员通过对故障发生时的各种光、声、味等异常现象的观察以及认真察看系统的每一处,往往可将故障范围缩小到一个模块或一块印刷线路板。这要求维修人员具有丰富的实际经验,要有多学科的较宽的知识和综合判断的能力。
2.自诊断功能法:现代的数控系统虽然尚未达到智能化很高的程度,但已经具备了较强的自诊断功能。能随时监视数控系统的硬件和软件的工作状况。一旦发现异常,立即在显示器上报警信息或用发光二极管批示出故障的大致起因。利用自诊断功能,也能显示出系统与主机之间接口信号的状态,从而判断出故障发生在机械部分还是数控系统部分,并批示出故障的大致部位。这个方法是当前维修时最有效的一种方法。
3.功能程序测试法:所谓功能程序测试法就是将数控系统的常用功能和特殊功能,如直线定位、圆弧插补、螺纹切削、固定循环、用户宏程序等用手工编程或自动编程方法,编制成一个功能程序测试纸带,通过纸带阅读机送入数控系统中,然后启动数控系统使之进行运行,藉以检查机床执行这些功能的准确性和可靠性,进而判断出故障发生的可能起因。本方法对于长期闲置的数控机床第一次开机时的检查以及机床加工造成废品但又无报警的情况下,一时难以确定是编程错误或是操作错误,还是机床故障时的判断是一较好的方法。
4.交换法:这是一种简单易行的方法,也是现场判断时最常用的方法之一。所谓交换法就是在分析出故障大致起因的情况下,维修人员可以利用备用的印刷线路板、模板,集成电路芯片或元器件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。它实际上也是在验证分析的正确性。
5.转移法:所谓转移法就是将系统中具有相同功能的二块印刷线路板、模块、集成电路芯片或元器件互相交换,观察故障现象是否随之转移。藉此,可迅速确定系统的故障部位。这个方法实际上就是交换法的一种。
6.参数检查法:数控参数能直接影响数控机床的功能。参数通常是存放在磁泡存储器或存放在需由电池保持的RAM中,一旦电池不足或由于外界的某种干扰等因素,会使个别参数丢失或变化,发生混乱,使机床无法正常工作。此时,通过核对、修正参数,就能将故障排除。当机床长期闲置工作时无缘无故地出现不正常现象或有故障而无报警时,就应根据故障特征,检查和校对有关参数。另外,经过长期运行的数控机床,由于其机械传动部件磨损,电气无件性能变化等原因,也需对其有关参数进行调整。有些机床的故障往往就是由于未及时修改某些不适应的参数所致。当然这些故障都是属于故障的范畴。
7.测量比较法:系统生产厂在设计印刷线路板时,为了调整、维修的便利,在印刷线路板上设计了多个检测用端子。用户也可利用这些端子比较测量正常的印刷线路板和有故障的印刷线路板之间的差异。可以检测这些测量端子的电压或波形,分析故障的起因及故障的所在位置。甚至,有时还可对正常的印刷线路人为地制造“故障”,如断开连线或短路,拨去组件等,以判断真实故障的起因。为此,维修人员应在平时积累印刷线路板上关键部位或易出故障部位在正常时的正确波形和电压值。因为系统生产厂往往不提供有关这方面的资料。
8.敲击法:当系统出现的故障表现为若有若无时,往往可用敲击法检查出故障的部位所在。这是由于cnc系统是由多块印刷线路板组成,每块板上又有许多焊点,板间或模块间又通过插接件及电缆相连。因此,任何虚焊或接触不良,都可能引起故障。当用绝缘物轻轻敲打有虚焊及接触不良的疑点处,故障肯定会重复再现。
9.局部升温:系统经过长期运行后元器件均要老化,性能会变坏。当它们尚未完全损坏时,出现的故障变得时有时无。这时可用热吹风机或电烙铁等来局部升温被怀疑的元器件,加速其老化,以便彻底暴露故障部件。当然,采用此法时,一定要注意元器件的温度参数等,不要将原来是好的器件烤坏。
10.原理分析法:根据系统的组成原理,可从逻辑上分析各点的逻辑电平和特征参数(如电压值或波形),然后用万用表、逻辑笔、示波器或逻辑分析仪进行测量、分析和比较,从而对故障定位。运用这种方法,要求维修人员必须对整个系统或每个电路的原理有清楚的、较深的了解。
除了以上常用的故障检查测试方法外,还有拔板法,电压拉偏法,开环检测法。这些检查方法各有特点,按照不同的故障现象,可以同时选择几种方法灵活应用,对故障进行综合分析,才能逐步缩小故障范围,较快地排除故障。
11.通过PLC检测故障:数控机床出现的大部分故障都是通过PLC装置检查出来的。PLC检测故障的机理就是通过运行机床厂家为特定机床编制的PLC梯形图(即程序),根据各种输人、输出状态进行逻辑判断,如果发现问题,产生报警并在显示器上产生报警信息。所以对一些PLC产生报警的故障,或一些没有报警的故障,可以通过分析PLC的梯形图对故障进行诊断,利用系统的梯形图显示功能或者机外编程器在线跟踪梯形图的运行,可提高诊断故障的速度和准确性。
普通机床检查方法和步骤看文档:http://wenku..com/view/23ba32d376eeaeaad1f3304d.html

⑶ 数控机床的常见电气故障及诊断维修方法有哪些

1.1 数控基床电气装置常见故障
数控机床的电气装置部分的故障主要是硬件故障,其中的硬件故障为:控制系统某元器件接触不良或损坏、无供电电源等,这种故障必须更换损坏的器件或者维修后才能排除故障。
1.2 数控机床可编程控制器的故障分析
数控机床可编程控制器,也就是plc控制器部分的故障分为:(1)软件故障:包括数控机床用户程序,如果用户程序出现故障,在数控机床运行时会发生一些无报警的机床故障,因此PLC用户程序要编制好。(2)硬件故障:也即是在PLC输入输出模块出现问题而引起的故障。对于个别输入输出口出现故障,可以通过修改PLC程序,可使用备用接口替代出现故障的接口。
1.3 数控机床伺服系统的故障分析
数控机床伺服控制系统是数控机床故障率最高的部分。伺服控制系统可分为直流伺服控制单元、直流永磁电动机和交流伺服控制单元、交流伺服电动机有两个部分,两者各有其优、缺点。伺服系统的故障一般都是由于伺服控制单元、伺服电动机、测速装置、编码器等出现问题引起的,要分别对各单元进行分析。
1.4显示器的故障分析
通常情况下,数控机床显示器出现错误的表现为:系统的软件出错,从而会导致系统显示的混乱或者不正常或根本无法显示,如果机床的电源出现故障或者系统主板出现故障的话都会导致系统的不正常显示。其中,显示系统本身出现故障是引起系统显示器不正常的最主要原因,因此,如果系统不能正常显示,就必须首先要分清造成此现象的主要原因。
数控机床的显示不正常可以分为完全无显示和显示不正常两种情况。当电源和系统的其他部分工作正常时,系统无显示的原因,一般情况下是由于硬件原因引起,而显示混乱或显示不正常,一般来说是由于系统软件引起的。另外,系统不同,所引起的原因也不同,这要根据实际情况进行分析。
1.5 控制元件、检测开关的故障分析
数控机床常用的控制元件有液压元件、气动元件、电气执行元件、机械装置、检测开关,检测元件有:检测开关,这些常见的机床控制元件、检测开关由于接触不良引起各种故障比较多,这类故障很容易解决,但是必须用仪器仪表配合检查。
2 数控机床常见电气故障诊断与排除方法
数控机床故障排查的方法很多,大致可以分为以下几种:
2.1直观检查法
这是故障分析之初必用的方法,就是利用感官的检查。
(1)问。即向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析判断过程中可能要多次询问。
(2)看。总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、润滑装置等)有无报警指示,局部查看有无保险烧煅,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等 。
(3)摸。在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、各功率及信号导线(如伺服与电机接触器接线)的联接状况等来发现可能出现故障的原因。
(4)试。这是指为了检查有无冒烟、打火、有无异常声音、气味以及触摸有无过热电动机和元件存在而通电,一旦发现立即断电分析。
2.2仪器检查法
仪器检查法就是使用常规电工仪表对各组交、直流电源电压及相关直流和脉冲信号等进行测量,从中找寻可能的故障。例如用万用表检查各电源情况,及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有无,用PLC 编程器查找PLC程序中的故障部位及原因等。
2.3 信号与报警指示分析法
(1)硬件报警指。这是指包括数控系统、伺服系统在内的各电子、电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。
(2)软件报警指示。如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。
2.4 接口状态检查法
现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。检修时,要求维修人员既要熟悉本机床的接口信号,又要熟悉PLC编程器的应用。
2.5 参数调整法
数控系统都设置许多可修改的参数以适应不同机床、不同工作状态的要求。这些参数不仅能使各电气系统与具体机床相匹配,而且更是使机床各项功能达到最佳化所必需的。因此,任何参数的变化(尤其是模拟量参数)甚至丢失都是不允许的;而机床运行所引起的机械或电气性能的变化会改变其最佳化状态。此类故障需要重新调整相关的一个或多个参数方可排除。这种方法对维修人员的要求是很高的,不仅要对具体系统主要参数十分了解,既熟悉其作用,而且要有较丰富的电气调试经验。
2.6 备件置换法
当故障集中于某一印制电路板上时,由于电路集成度的不断扩大而要把故障落实于某一区域乃至某一元件比较困难,为了缩短停机时间,在有相同备件的条件下可以先将备件换上,然后再检查修复故障板。备件板的更换要注意以下问题:
(1)更换任何备件都必须在断电情况下进行。
(2)在更换备件板上要记录下原有的开关位置和设定状态,并将新板作好同样的设定,否则会产生报警而不能工作。
(3)某些印制电路板的更换还需在更换后进行某些特定操作以完成其中软件与参数的建立。这一点需要仔细阅读相应电路板的使用说明。
(4)有些印制电路板是不能轻易拔出的,例如含有工作存储器的板,或者备用电池板,它会丢失有用的参数或者程序。必须更换时也必须遵照有关说明操作。
鉴于以上条件,在拔出旧板更换新板之前一定要先仔细阅读相关资料,弄懂要求和操作步骤之后再动手,以免造成更大的故障。
2.7交叉换位法
当发现故障板或者不能确定是否故障板而又没有备件的情况下,可以将系统中相同或相兼容的两个板互换检查分散机 涂料分散机 高速分散机 实验室分散机 真空分散机 升降分散机 高粘度分散机 实验室分散机 双行星混合机 双行星搅拌机 多功能混合机 电池浆料搅拌机 环氧树脂搅拌机 电池浆料混合机,不仅硬件接线的正确交换,还要将一系列相应的参数交换,一定要事先考虑周全,设计好软、硬件交换方案,准确无误再行交换检查。
2.8 特殊处理法
当今的数控系统其中软件含量越来越丰富,有系统软件、机床制造者软件、甚至还有使用者自己的软件,由于软件逻辑的设计中不可避免的一些问题,会使得有些故障状态无从分析,例如死机现象。对于这种故障现象则可以采取特殊手段来处理,比如整机断电,稍作停顿后再开机,有时则可能将故障消除。维修人员可以在自己的长期实践中摸索其规律或者其他有效的方法。

⑷ 数控机床常见故障分类及处理方法是什么

由于数控机床自动化程度高,结构复杂,所以故障率也较普通机床设备高,维修难度也较大,同时对数控机床维修人员的素质要求也越来越高,要求机床出现故障后,能尽快排除。数控机床维修技术不仅能够保障数控设备正常运行,而且对数控技术的发展和完善也有一定的推动作用,因此,研究和诊断数控机床故障,以及常规处理是具有非常意义的。
一、前言
为了使数控机床应有的功效发挥出来,数控机床的正常运行占主导地位,在数控设备出现问题时,及时去排除故障就显得特别重要。但是相对于接触机床不多的维修人员来说,机床出现故障,往往不知从何下手,而延误维修时间。这时如果我们借助数控系统本身具备的自诊断功能的话,对我们的维修会产生很大帮助。同时,作为维修人员当数控机床发生故障后,我们需要向操作者了解故障发生的具体症状,产生的道程序及时间,操作方法正确与否,才能及时发现问题,以免隐患过大,造成不必要的损失。还有就是要检查按钮、熔断器,接线端子等元件,在接线时螺钉、航空插头和插座、电路板上的插头是否拧紧,每个拨把开关,操作方式是否正确等。还要根据机械故障较易察觉的特点,当发生机床过载或者过热报警时,应首先检查滑板的镶条是否装过紧,滑板和床身导轨之间摩擦力是否增大,从而使电机运转难度大,还有滚珠丝杠和托架之间是否同心,如丝杠中滚珠磨损造成丝杠过紧,也可使电机过载、过热,从而导致电气故障。因此我们在数控机床的正常维修当中,认真做好上面几项工作,共同配合,就可以少走弯路,较快排除故障,减少数控机床的停机时间,增强数控机床的使用率,使生产实践得以顺利进行,完成学生实习的进度。
二、常见故障的分类
数控机床由于自身原因不能正常工作,就是产生了故障。产生的原因也比较复杂,但很大一部分故障是由于操作人员操作机床不当引起的。
机床故障可分为以下几种类型。
(一)系统故障和随机故障
按故障的出现的必然性和偶然性,分为系统性故障和随机性故障。系统性故障是指机床和系统在某一特定条件下必定会出现的故障,随机性故障是指偶然出现的故障。因此,随机性故障的分析和排除比系统性故障困难的多。通常随机性故障往往会因为机械结构局部松动、错位、控制系统中元器件出现工作特性飘移,电器元件工作可靠性下降等原因造成,需经反复试验和综合判断才能排除。
(二)诊断显示故障和无诊断显示故障
按故障出现时有无自诊断显示,可以分为有诊断显示故障和无诊断显示故障两种。如今的数控系统有比较丰富的自诊断功能,出现故障时会停机、报警而且会自动显示相应报警的参数号,这样可以让维护人员很快找到故障原因。而无诊断显示故障,一般是机床停在某一位置不能动,手动操作也没法,维护人员只能根据出现故障前后现象来分析判断,排除故障难度就比较大。
(三)破坏性故障和非破坏性故障
以故障有无破坏性,分为破坏性故障和非破坏性故障。对于破坏性故障就像伺服失控造成撞车,短路烧断熔丝等,维护难度较大,有一定危险,修后这些现象是不能重复出现的。而非破坏性故障可经过多次反复试验至排除,就不会对机床造成危害。
(四)机床运动特性质量故障
此类故障发生后,机床会照常运行,不会有报警显示,但加工出的工件不合格。对于这些故障,必须在检测仪器配合下,对机械、控制系统、伺服系统等采取一些综合措施。
(五)硬件故障和软件故障
按发生故障的部位分为硬件故障和软件故障。硬件故障只要通过更换某些元器件就可以排除,但是软件故障是编程错误导致的,因此需要修改程序内容或修订机床参数来排除。
(六)数控机床常见的操作故障
1、防护门未关,机床不能运转。2、机床未回参考点。3、主轴转速S超过最高转速限定值。4、程序内没有设置F或S值。5、进给修调F%或主轴修调S%开关设为空挡。6、回参考点时离零点太近或参考点速度太快,引起超程。7、程序中G00位置超过限定值。8、刀具补偿测量设定错误。9、刀具换刀位置不正确。10、G40撤销不当,引起刀具切入已加工表面。11、程序中使用了非法代码。12、刀具半径补偿方向错误。13、切入、切出方式不当。14、切削用量太大。15、刀具钝化。16、工件材质不均匀,引起振动。17、机床被锁定(工作台不动)。18、工件未夹紧。19、对刀位置不正确,工件坐标系设置错误。20、使用了不合理的G功能指令。21、机床处于报警状态。22、断电后或报过警的机床,没有重新回参考点或复位。
三、故障常规处理方法
加工中心出现故障,除少量自诊断功能可以显示故障外(如存储器报警,动力电源电压过高报警等),大部分故障是由综合因素引起,往往不能确定其具体原因。
数控机床出现故障后,不能盲目处理,首先要检查故障记录,向操作人员了解故障出现的全过程。在确认通电对机床和系统无危险的情况下再进行观察,特别要确定以下故障信息:
1、故障发生时,报警号和报警提示是什么?哪盏指示灯或发光管发光?提示的警报内容是什么?2、如无报警,系统处于何种工作状态?系统的工作方式诊断结果是什么?3、故障发生在哪个程序段?执行何种指令?故障发生前执行了何种操作?4、故障发生在何种速度下?轴处于什么位置?与指令值的误差量有多大?5、以前是否发生过类似故障?现场是否有异常情况?故障是否重复发生?我们可以采用归纳法和演绎法,对上面的5个部分故障信息进行有效的归纳与演绎。归纳法是从故障原因出发,摸索其功能,调查原因对结果的影响,也就是说根据可能产生该种故障的原因分析,看最后是否与故障现象的符合程度来确定故障点。演绎法是指从现象出发,对故障现象原因进行分割分析法。即从故障现象开始,根据故障机理,列出该故障产生的种种原因,然后,对这些原因逐点进行分析,排除不正确的,最后确定故障点。
同时,在故障诊断过程中通常要按先外后内、先机后电、先静后动、现公用后专用、先简单后复杂、先一般后特殊的原则进行。
在分析好以上5个部分的故障之后,一般可以按以下步骤进行常规处理:
(一)充分调查故障现场
机床发生故障后,维护人员应仔细观察寄存器和缓冲工作寄存器尚存内容,了解已执行程序内容,向操作者了解现场情况和现象。当有诊断显示报警时,打开电器柜观察印制电路板上有无相应报警红灯显示。做完这些调查后,就可以按动数控机床上的复位键,观察系统复位后报警是否消除,消除的话属于软件故障,否则即为硬件故障。对于非破坏性故障,可让机床再重新运行,仔细观察故障是否再现。
(二)将可能造成故障的原因全部列出
加工中心上造成故障的原因多种多样,有机械的、电气的、控制系统的等等。此时,要将可能发生的故障原因全部列出来,以便排查。
(三)逐步选择确定故障产生的原因
根据故障现象,参考机床有关维修使用手册罗列出的因素,经过选择及综合判断,找出导致故障的确定因素。
(四)故障的排除
找到造成故障的确切原因后,就可以“对症下药”修理、调整和更换有关原件。
四、常见机械故障的排除
(一)进给传动链故障
由于导轨普遍采用滚动摩擦副,因此运动质量下降是导致进给传动故障的重要因素,如机械部件没有达到规定位置、运行中断、定位精度下降、反向间隙过大等,出现这些都是可调整各运动副预紧力、调整松动环节、提高运动精度及调整补偿环节。
(二)机床回零故障
机床在返回基准点时发生超程报警,无减速运动。此类故障一般是减速信号没有输入到CNC系统,一般可检查限位挡块及信号线。
(三)自动换刀装置故障
此类故障较为常见,故障表现为:刀锯库运动故障、定位误差大、换刀动作不到位、换到动作卡位、整机停止工作等,此类故障的排除一般可通过检查气缸压力、调整各限位开关位置、检查反馈信号线、调整与换刀动作相关的机床参数来排除。
(四)机床不能运动或加工精度差
这是一些综合故障,出现此类故障时,可通过重新调整和改变间隙补偿、检查轴进给时有无爬行等方法来排除。
五、数控机床的安全操作
数控机床的操作,一定要做到规范操作,以避免发生人身、设备、刀具等的安全事故。为此,数控机床在操作的过程中一定要严格按照数控机床的规范操作来完成,防止机床故障,从而保证机床正常运行。
主要体现在以下四个方面:
1、操作前的安全工作。
2、机床操作过程中的安全操作。
3、与编程相关的安全操作。
4、关机时的注意事项。

⑸ 怎么排除数控机床的常见故障

数控系统故障维修通常按照:现场故障的诊断与分析、故障的测量维修排除、系统的试车这三大步进行。

1、数控机床故障诊断

在故障诊断时应掌握以下原则:

1.1 先外部后内部

现代数控系统的可靠性越来越高,数控系统本身的故障率越来越低,而大部分故障的发生则是非系统本身原因引起的。由于数控机床是集机械、液压、电气为一体的机床,其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查。尽量避免随意地启封、拆卸,否则会扩大故障,使机床丧失精度、降低性能。系统外部的故障主要是由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。

1.2 先机械后电气

一般来说,机械故障较易发觉,而数控系统及电气故障的诊断难度较大。在故障检修之前,首先注意排除机械性的故障。

1.3 先静态后动态

先在机床断电的静止状态,通过了解、观察、测试、分析,确认通电后不会造成故障扩大、发生事故后,方可给机床通电。在运行状态下,进行动态的观察、检验和测试,查找故障。而对通电后会发生破坏性故障的,必须先排除危险后,方可通电。

1.4 先简单后复杂

当出现多种故障互相交织,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。

2、数控机床的故障诊断技术

数控系统是高技术密集型产品,要想迅速而正确的查明原因并确定其故障的部位,要借助于诊断技术。随着微处理器的不断发展,诊断技术也由简单的诊断朝着多功能的高级诊断或智能化方向发展。诊断能力的强弱也是评价CNC数控系统性能的一项重要指标。目前所使用的各种CNC系统的诊断技术大致可分为以下几类:

2.1 起动诊断

起动诊断是指CNC系统每次从通电开始,系统内部诊断程序就自动执行诊断。诊断的内容为系统中最关键的硬件和系统控制软件,如 CPU、存储器、I/O 等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。否则,将在CRT画面或发光二极管用报警方式指示故障信息。此时起动诊断过程不能结束,系统无法投入运行。

2.2 在线诊断

在线诊断是指通过CNC系统的内装程序,在系统处于正常运行状态时对CNC系统本身及CNC装置相连的各个伺服单元、伺服电机、主轴伺服单元和主轴电动机以及外部设备等进行自动诊断、检查。只要系统不停电,在线诊断就不会停止。

在线诊断一般包括自诊断功能的状态显示有上千条,常以二进制的0、1来显示其状态。对正逻辑来说,0表示断开状态,1表示接通状态,借助状态显示可以判断出故障发生的部位。常用的有接口状态和内部状态显示,如利用I/O接口状态显示,再结合PLC梯形图和强电控制线路图,用推理法和排除法即可判断出故障点所在的真正位置。故障信息大都以报警号形式出现。一般可分为以下几大类:过热报警类;系统报警类;存储报警类;编程/设定类;伺服类;行程开关报警类;印刷线路板间的连接故障类。

2.3 离线诊断
离线诊断是指数控系统出现故障后,数控系统制造厂家或专业维修中心利用专用的诊断软件和测试装置进行停机(或脱机)检查。力求把故障定位到尽可能小的范围内,如缩小到某个功能模块、某部分电路,甚至某个芯片或元件,这种故障定位更为精确。

2.4 现代诊断技术

随着电信技术的发展,IC和微机性价比的提高,近年来国外已将一些新的概念和方法成功地引用到诊断领域。

(1) 通信诊断

也称远程诊断,即利用电话通讯线把带故障的CNC系统和专业维修中心的专用通讯诊断计算机通过连接进行测试诊断。如西门子公司在CNC系统诊断中采用了这种诊断功能,用户把CNC系统中专用的“通信接口”连接在普通电话线上,而两门子公司维修中心的专用通迅诊断计算机的“数据电话”也连接到电话线路上,然后由计算机向 CNC系统发送诊断程序,并将测试数据输回到计算机进行分析并得出结论,随后将诊断结论和处理办法通知用户。

通讯诊断系统还可为用户作定期的预防性诊断,维修人员不必亲临现场,只需按预定的时间对机床作一系列运行检查,在维修中心分析诊断数据,可发现存在的故障隐患,以便及早采取措施。当然,这类CNC系统必须具备远程诊断接口及联网功能。

(2) 自修复系统

就是在系统内设置有备用模块,在CNC系统的软件中装有自修复程序,当该软件在运行时一旦发现某个模块有故障时,系统一方面将故障信息显示在CRT上,同时自动寻找是否有备用模块,如有备用模块,则系统能自动使故障脱机,而接通备用模块使系统能较快地进入正常工作状态。这种方案适用于无人管理的自动化工作场合。

需要注意的是:机床在实际使用中也有些故障既无报警,现象也不是很明显,对这种情况,处理起来就不那样简单了。另外有此设备出现故障后,不但无报警信息,而且缺乏有关维修所需的资料。对这类故障的诊断处理,必须根据具体情况仔细检查,从现象的微小之处进行分析,找出它的真正原因。要查清这类故障的原因,首先必须从各种表面现象中找山它的真实故障现象,再从确认的故障现象中找出发生的原因。全面地分析一个故障现象是决定判断是否正确的重要因素。在查找故障原因前,首先必须了解以下情况:故障是在正常工作中出现还是刚开机就出现的;山现的次数是第一次还是已多次发生;确认机床加工程序的正确性;是否有其他人

3、数控机床的常见故障排除方法

由于数控机床故障比较复杂,同时数控系统自诊断能力还不能对系统的所有部件进行测试,往往是一个报警号指示出众多的故障原因,使人难以入手。下面介绍维修人员任生产实践中常用的排除故障方法。

3.1直观检查法

直观检查法是维修人员根据对故障发生时的各种光、声、味等异常现象的观察,确定故障范围,可将故障范围缩小到一个模块或一块电路板上,然后再进行排除。一般包括:

a.询问:向故障现场人员仔细询问故障产生的过程、故障表象及故障后果等;

b.目视:总体查看机床各部分工作状态是否处于正常状态,各电控装置有无报警指示,局部查看有无保险烧断,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等;

c.触摸:在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、各功率及信号导线的联接状况以及用手摸并轻摇元器件,尤其是大体积的阻容、半导体器件有无松动之感,以此可检查出一些断脚、虚焊、接触不良等故障;

d.通电:是指为了检查有无冒烟、打火,有无异常声音、气味以及触摸有无过热电动机和元件存在而通电,一旦发现立即断电分析。如果存在破坏性故障,必须排除后方可通电。

例:一台数控加工中心在运行一段时间后,CRT显示器突然出现无显示故障,而机床还可继续运转。停机后再开又一切正常。观察发现,设备运转过程中,每当发生振动时故障就可能发生。初步判断是元件接触不良。当检查显示板时,CRT显示突然消失。检查发现有一晶振的两个引脚均虚焊松动。重新焊接后,故障消除。

3.2 初始化复位法

一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障。若系统工作存贮区由于掉电、拨插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。

例:一台数控车床当按下自动运行键,微机拒不执行加工程序,也不显示故障自检提示,显示屏幕处于复位状态(只显示菜单)。有时手动、编辑功能正常,检查用户程序、各种参数完全正确;有时因记忆电池失效,更换记忆电池等,系统显示某一方向尺寸超量或各方向的尺寸都超最(显示尺寸超过机床实斤能加工的最大尺寸或超过系统能够认可的最大尺寸)。排除方法:采用初始化复位法使系统清零复位(一般要用特殊组合健或密码)。3.3 自诊断法

数控系统已具备了较强的自诊断功能,并能随时监视数控系统的硬件和软件的工作状态。利用自诊断功能,能显示出系统与主机之间的接口信息的状态,从而判断出故障发生在机械部分还是数控部分,并显示出故障的大体部位(故障代码)。

a.硬件报警指示:是指包括数控系统、伺服系统在内的各电气装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法;
b.软件报警指示:系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及排除方法。

功能程序测试法是将数控系统的G、M、S、T、F功能用编程法编成一个功能试验程序,并存储在相应的介质上,如纸带和磁带等。在故障诊断时运行这个程序,可快速判定故障发生的可能起因。

功能程序测试法常应用于以下场合:

a.机床加工造成废品而一时无法确定是编程操作不当、还是数控系统故障引起;

b. 数控系统出现随机性故障,一时难以区别是外来干扰,还是系统稳定性个好;

c. 闲置时间较长的数控机床在投入使用前或对数控机床进行定期检修时。
例:一台FANUC9系统的立式铣床在自动加工某一曲线零件时出现爬行现象,表面粗糙度极差。在运行测试程序时,直线、圆弧插补时皆无爬行,由此确定原因在编程方面。对加工程序仔细检查后发现该曲线由很多小段圆弧组成,而编程时又使用了正确定位外检查C61指令之故。将程序中的G61取消,改用G64后,爬行现象消除。

3.5 备件替换法

用好的备件替换诊断出坏的线路板,即在分析出故障大致起因的情况下,维修人员可以利用备用的印刷电路板、集成电路芯片或元器件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。并做相应的初始化起动,使机床迅速投入正常运转。

对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作。尽最大可能缩短故障停机时间,使用这种方法在操作时注意一定要在停电状态下进行,还要仔细检查线路板的版本、型号、各种标记、跨接是否相同,若不一致则不能更换。拆线时应做好标志和记录。

一般不要轻易更换CPU板、存储器板及电地,否则有可能造成程序和机床参数的丢失,使故障扩大。

例:一台采用西门子SINUMERIK SYSTEM 3系统的数控机床,其PLC采川S5—130w/B,一次发生故障时,通过NC系统PC功能输入的R参数,在加工中不起作用,不能更改加上程序中R参数的数值。通过对NC系统工作原理及故障现象的分析,认为PLC的主板有问题,与另一台机床的主板对换后,进一步确定为PLC主板的问题。经专业厂家维修,故障被排除。

3.6 交叉换位法

当发现故障板或者个能确定是否是故障板而又没有备件的情况下,可以将系统中相同或相兼容的两个板互换检查,例如两个坐标的指令板或伺服板的交换,从中判断故障板或故障部位。这种交叉换位法应特别注意,不仅要硬件接线的正确交换,还要将一系列相应的参数交换,否则不仅达不到目的,反而会产生新的故障造成思维混乱,一定要事先考虑周全,设计好软、硬件交换方案,准确无误再行交换检查。

例:一台数控车床出现X向进给正常,Z向进给出现振动、噪音大、精度差,采用手动和手摇脉冲进给时也如此。观察各驱动板指示灯亮度及其变化基本正常,疑是Z轴步进电动机及其引线开路或Z轴机械故障。遂将Z轴电机引线换到X轴电机上,X轴电机运行正常,说明Z轴电动机引线正常;又将X轴电机引线换到Z轴电机上,故障依旧;可以断定是Z轴电动机故障或Z轴机械故障。测量电动机引线,发现一相开路。修复步进电动机,故障排除。

3.7 参数检查法

系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。发生故障时应及时核对系统参数,参数一般存放在磁泡存储器或存放在需由电池保持的 CMOS RAM中,一旦电池电量不足或由于外界的干扰等因素,使个别参数丢失或变化,发生混乱,使机床无法正常工作。此时,可通过核对、修正参数,将故障排除。

例:一台数控铣床上采用了测量循环系统,这一功能要求有一个背景存贮器,调试时发现这一功能无法实现。检查发现确定背景存贮器存在的数据位没有设定,经设定后该功能正常。

又如:一台数控车床数控刀架换对突然出现故障,系统无法自动运行,在手动换刀时,总要过一段时间才能再次换刀。遂对刀补等参数进行检查,发现一个手册上没有说明的参数P20变为20,经查有关资料P20是刀架换刀时间参数,将其清零,故障排除。

有时由于用户程序和参数错误亦可造成故障停机,对此可以采用系统的程序自诊断功能进行检查,改正所有错误,以确保其正常运行。

3.8 测量比较法

CNC系统生产厂在设计印刷线路板时,为了调整和维修方便,在印刷线路板上设计了一些检测端子。维修人员通过测量这些检测端子的电压或波形,可检查有关电路的工作状态是否正常。但利用检测端子进行测量之前,应先熟悉这些检测端子的作用及有关部分的电路或逻辑关系。

3.9 敲击法

当系统故障表现为有时正常有时不正常时,基本可以断定为元器件接触不良或焊点开焊,利用敲击法检查时,当敲击到虚焊或接触不良的故障部位时,故障就会出现。

3.10 局部升温法

数控系统经过长期运行后元件均要老化,性能变坏。当它们尚未完全损坏时,出现的故障就会时有时无。这时用电烙铁或电吹风对被怀疑的元件进行局部加温,会使故障快速出现。操作时,要注意元器件的温度参数等,注意不要损坏好的元器件。

3.11 原理分析法
根据数控系统的组成原理,可从逻辑上分析各点的逻辑电平和特性参数,如电压值和波形,使用仪器仪表进行测量、分析、比较,从而确定故障部位。

除以上常用的故障检测方法之外,还可以采用拔插板法、电压拉偏法、开环检测法等。总之,根据不同的故障现象,可以同时选用几个方法灵活应用、综合分析,才能逐步缩小故障范围,较快地排除故障。

4、数控机床维修后的开机调试

机床的故障排除后通常分两大步进行通电试车:

4.1 自动状态试验

将机床锁住,用编制的程序进行空运转试验,验证程序的正确性,然后放开机床,分别将进给倍率开关、快速超凋开关、主轴速度超调开关进行多种变化,使机床在上述各开关的多种变化的情况下进行充分地运行,后将各超调开关置于100%处,使机床充分运行,观察整机的工作情况是否正常。

4.2 正常加工试验

夹装好工件按正常程序进行加工,加工后检查工件的加工精度是否符合标准要求

5、维修调试后的技术处理

在现场维修结束后,应认真填写维修记录,列出有关必备的备件清单,建立用户档案。对于故障时间、现象、分析诊断方法、采用排故方法,如果有遗留问题应详尽记录,这样不仅使每次故障都有据可查,而且也可以不断积累维修经验。

⑹ 数控机床故障排除的一般办法有哪些

数控机床故障诊断一般包括三个步骤:第一步骤是故障检测;第二步骤是故障判定及隔离;第三步骤是故障定位。数控机床故障诊断一般采用追踪法、自诊断、参数检查、替换法、测量法。
1.追踪法
追踪法是指在故障诊断和维修前,维修人员要先对故障发生的时间、机床的运行状态和故障类型进行详细的了解,然后寻找产生故障的各种迹象。
追踪法检查是一种基本的检查故障的方法,发向故障后要查找引起故障的根源,采取合理的方法给与排除。
2.自诊断功能
现代数控系统尤其是全功能数控系统具有很强的自诊断功能,通过随时监控系统各部分的工作,及时判断故障并立刻在CRT上显示报警信息。有时当硬件发生故障而不能发出报警信息时,就要通过发光二极管的闪烁来指示故障的大致起因。自诊断一般分为现代数控系统尤其是全功能数控系统具有很强的自诊断功能,通过随时监控系统各部分的工作,及时判断故障并立刻在CRT上显示报警信息。有时当硬件发生故障而不能发出报警信息时,就要通过发光二极管的闪烁来指示故障的大致起因。自诊断一般分为启动自诊断、在线自诊断和离线自诊断。
启动诊断是指CNC系统每次从通电开始,系统内部诊断程序就自动执行诊断。诊断的内容为系统中最关键的硬件和系统控制软件,如 CPU、存储器、I/O 等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。否则,将在CRT画面或发光二极管用报警方式指示故障信息。此时起动诊断过程不能结束,系统无法投入运行。
在线诊断是指通过CNC系统的内装程序,在系统处于正常运行状态时对CNC系统本身及CNC装置相连的各个伺服单元、伺服电机、主轴伺服单元和主轴电动机以及外部设备等进行自动诊断、检查。只要系统不停电,在线诊断就不会停止。
在线诊断一般包括自诊断功能的状态显示有上千条,常以二进制的0、1来显示其状态。对正逻辑来说,0表示断开状态,1表示接通状态,借助状态显示可以判断出故障发生的部位。常用的有接口状态和内部状态显示,如利用I/O接口状态显示,再结合PLC梯形图和强电控制线路图,用推理法和排除法即可判断出故障点所在的真正位置。故障信息大都以报警号形式出现。一般可分为以下几大类:过热报警类;系统报警类;存储报警类;编程/设定类;伺服类;行程开关报警类;印刷线路板间的连接故障类。
离线诊断是指数控系统出现故障后,数控系统制造厂家或专业维修中心利用专用的诊断软件和测试装置进行停机(或脱机)检查。力求把故障定位到尽可能小的范围内,如缩小到某个功能模块、某部分电路,甚至某个芯片或元件,这种故障定位更为精确。
3.参数检查
系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。发生故障时应及时核对系统参数,参数一般存放在磁泡存储器或存放在需由电池保持的 CMOS RAM中,一旦电池电量不足或由于外界的干扰等因素,使个别参数丢失或变化,发生混乱,使机床无法正常工作。此时,可通过核对、修正参数,将故障排除。
4.替换法
替换法是在数控系统出现故障时,利用备用电路板、模块、集成电路芯片及其他元器件代替有疑点的部位,观察故障点的转移情况,确定故障点的位置,是一种快速而简便的找出故障点的方法。当无备用板时,也可以用同型号系统上的元器件来代替。
5.测量法
CNC系统生产厂在设计印刷线路板时,为了调整和维修方便,在印刷线路板上设计了一些检测端子。维修人员通过测量这些检测端子的电压或波形,可检查有关电路的工作状态是否正常。但利用检测端子进行测量之前,应先熟悉这些检测端子的作用及有关部分的电路或逻辑关系。

⑺ 数控机床的故障怎样排除

1、数控机床初始化复位法:一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电,拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。
2、参数更改,程序更正法:系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统的块搜索功能进行检查,改正所有错误,以确保其正常运行。
3、调节,最佳化调整法:调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。如某厂维修中,其系统显示器画面混乱,经调节后正常。如在某厂,其主轴在启动和制动时发生皮带打滑,原因是其主轴负载转矩大,而驱动装置的斜升时间设定过小,经调节后正常。
最佳化调整是系统地对伺服驱动系统与被拖动的机械系统实现最佳匹配的综合调节方法,其办法很简单,用一台多线记录仪或具有存贮功能的双踪示波器,分别观察指令和速度反馈或电流反馈的响应关系。通过调节速度调节器的比例系数和积分时间,来使伺服系统达到即有较高的动态响应特性,而又不振荡的最佳工作状态。在现场没有示波器或记录仪的情况下,根据经验,即调节使电机起振,然后向反向慢慢调节,直到消除震荡即可。
4、备件替换法:用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板修理或返修,这是最常用的排故办法。
5、改善电源质量法:一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。
6、维修信息跟踪法:一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员。以此做为故障排除的依据,可正确彻底地排除故障。

⑻ 数控机床故障诊断的常用方法和手段是什么

数控机床,是一种技术含量很高的机、电、仪一体化的复杂的自动化机床,机床在运行过程中,零部件不可避免地会发生不同程度、不同类型的故障,因此,熟悉机械故障的特征,掌握数控机床机械故障诊断的常用方法和手段,对确定故障的原因和排除有着重大的作用。
一、数控机床故障诊断原则与基本要求
所谓数控机床系统发生故障(或称失效)是指数控机床系统丧失了规定的功能。故障可按表现形式、性质、起因等分为多种类型。但不论哪种故障类型,在进行诊断时,都可遵循一些原则和诊断技巧。
1.1、排障原则。
主要包括以下几个方面:1)充分调查故障现象,首先对操作者的调查,详细询问出现故障的全过程,有些什么现象产生,采取过什么措施等。然后要对现场做细致的勘测;2)查找故障的起因时,思路要开阔,无论是集成电器,还是和机械、液压,只要有可能引起该故障的原因,都要尽可能全面地列出来。然后进行综合判断和优化选择,确定最有可能产生故障的原因;3)先机械后电气,先静态后动态原则。在故障检修之前,首先应注意排除机械性的故障。再在运行状态下,进行动态的观察、检验和测试,查找故障。而对通电后会发生破坏性故障的,必须先排除危险后,方可通电。
1.2、故障诊断要求。
除了丰富的专业知识外,进行数控故障诊断作业的人员需要具有一定的动手能力和实践操作经验,要求工作人员结合实际经验,善于分析思考,通过对故障机床的实际操作分析故障原因,做到以不变应万变,达到举一反三的效果。完备的维修工具及诊断仪表必不可少,常用工具如螺丝刀、钳子、扳手、电烙铁等,常用检测仪表如万用表、示波器、信号发生器等。除此以外,工作人员还需要准备好必要的技术资料,如数控机床电器原理图纸、结构布局图纸、数控系统参数说明书、维修说明书、安装、操作、使用说明书等。
二、故障处理的思路
不同数控系统设计思想千差万异,但无论那种系统,它们的基本原理和构成都是十分相似的。因此在机床出现故障时,要求维修人员必须有清晰的故障处理的思路:调查故障现场,确认故障现象、故障性质,应充分掌握故障信息,做到“多动脑,慎动手”避免故障的扩大化。根据所掌握故障信息明确故障的复杂程度,并列出故障部位的全部疑点。准备必要的技术资料,比如机床说明书,电气控制原理图等,以此为基础分析故障原因,制定排除故障的方案,要求思路开阔,不应将故障局限于机床的某一部分。在确定故障排除方案后,利用示万用表、示波器等测量工具,用试验的方法验证并检测故障,逐级定位故障部位,确认出故障属于电气故障还是机械故障,是系统性的还是随机性的,是自身故障还是外部故障等等。故障的排除。通常找到故障原因后问题会马上迎刃而解。
三、故障处理方法
数控机床的数控系统是数控机床的核心所在,它的可靠运行,直接关系到整个设备运行的正常与否。下面总结提炼出一些判断与排除数控机床故障的方法。
3.1、充分利用数控系统硬件、软件报警功能。
在现代数控系统中均设置有众多的硬件报警指示装置,设置硬件报警指示装置有利于提高数控系统的可维护性。数控机床的CNC系统都具有自诊断功能。在数控系统工作期间,能够适时使用自诊断程序对系统进行快速诊断。一旦检测到故障,就会立即将故障以报警的方式显示在CRT上或点亮面板上报警指示灯。而且这种自诊断功能还能够将故障分类报警。
3.2、数控机床简单故障报警处理的方法。
通常,数控机床具有较强的自警功能,能够随时监控系统硬件和软件的工作状态,数控机床的大部分故障能够出现报警提示,可以根据故障提示,确定机床的故障,及时处理、排除故障,提高机床完好率和使用效率。
3.3、直接观察法。
直接观察法就是利用人的感觉器官注意发生故障时(或故障发生后)的各种外部现象并判断故障的可能部位的方法。这是处理数控系统故障首要的切入点,往往也是最直接、最行之有效的方法,对于一般情况下“简单”故障通过这种直接观察,就能解决问题。
3.4、利用状态显示诊断功能判断故障的方法。
现代数控系统不但能够将故障诊断信息显示出来,而且还能够以诊断地址和诊断数据的形式,提供诊断的各种状态。
3.5、发生故障及时核对数控系统参数判断故障的方法。
数控机床的数控系统的参数变化,会直接影响到数控机床的性能,使数控机床发生故障,甚至整机不能正常工作。因此,在对故障的分析诊断过程中,尽管采取了一些措施,仍然不能解决问题、排除故障,或者对故障出处不够明朗的话,应该改变思路,从人们所说的“软”故障着手。检查核对数控系统的参数,是否是因为数控系统参数变化所导致的故障,往往是一丝异常,便是症结所在。
四、故障举例
4.1、数控机床排屑器故障分析及其改进。
经现场工作人拆下电机并对其进行试运行,结果显示运转正常,因此可排除电机故障原因,同时可观察到电动机传动轴上的键并未在键槽上,因此可初步诊断故障的直接原因为电机轴与排屑螺旋杆脱离,进一步分析,由于传动键受到负载瞬时不断变化的力,若此时把传动键进行分割,这时就可以把分割的每一部分看成一个横梁,因此可对其进行振动分析。
经过受力情况的分析,传动键具备了微动磨损产生的条件因此传动键磨损属于微动磨损,而且搜寻发现键已脱落到螺旋杆管孔内,可以得出键完好只有些微小磨损,因此可排除键压溃以及键磨损原因,最后可断定此次故障的直接原因为键脱落,造成螺旋排屑杆与电机轴脱离失去传动力。将键装上并将电机重新装配后,故障排除工作正常。
4.2、数控机床的振动爬行处理。
数控系统的振荡现象已成为数控全闭环系统的共同性问题。系统振荡时会造成机床产生爬行与振动故障,机床的振荡故障通常发生在机械部分和进给伺服系统。产生振荡的原因有很多,陈了机械方面存在不可消除的传动间隙、弹性变形、摩擦阻力等诸多因素外,伺服系统的有关参数的影响也是重要的一方面。有时数控系统会因扩械上某些振荡原因产生反馈信号中含有高频谐波,这使输出转矩里不桓定,从而产生振动。对于这种高频振荡情况,可在速度环上加入一阶低通滤波环节,即为转矩滤波器。
速度指令与速度反馈信号经速度控制器转化为转矩信号,转矩信号通过一阶滤波环节将高频成分截止,从而得到有效的转矩控制信号。通过调节参数可将机械产生的100Hz以上的频率截止,从而达到消除高频振荡的效果。
五、故障排除的确认及善后工作
故障排除以后,维修工作还不能算完成,尚需从技术与管理两方面分析故障产生的深层次原因,采取适当措施避免故障再次发生。必要时可根据现场条件使用成熟技术对设备进行改造与改进。故障排除的确认,故障处理完毕。整理好线路,把机床的所有动作均试运转一遍,正常可交付使用,同时让操作工继续做好运行观察。一段时间后,询问一下操作工机床的运行状况,并再次对故障点进行全面检查。最后做维修记录,详细记录维修的整个过程,包括维修时间、更换件型号规格及故障原因分析等。从排除故障过程中发现自己欠缺的知识,制定学习计划,最终充实自己。

⑼ 机床电气故障有哪些检修步骤

机床电气故障检修一般可分为以下几个步骤:
(1)准备工作
准备工作包括准备必须的工具、仪表、机床电路图和其他资料等
(2)读图
对于要检修的机床,首先必须读懂电路原理图。
(3)通过"一问、二看、三摸、四听、五操作",弄清楚故障现象和故障发生前后的情况。
一问:向机床操作者询问了解故障发生的前后情况;故障是突然发生的还是经常发生的?有什么异常现象出现?有什么失常现象?等等。这样准确掌握初始的第一手资料,有利于判断故障发生的部位,迅速找出故障点。
二看:认真观察机床电器或线路的表面情况。
三听:启动机床,听电动机、控制变压器、接触器、继电器等是否有异常声和闭合声。
四摸:当机床运行一段时间后,切断电源,用手模有关电器的外壳或电磁线圈,检查是否有不止常的发热现象等。
五操作:从启机开始,对机床的所有功能进行一一操作演示,在一步一步的操作中仔细观察操作过程,从中查找发现机床的电气故障,以利于迅速准确无误地确定机床的电气故障范围。
(4)根据故障现象结合电路图分析故障大致范围由以上"问、看、听、摸、操作"等过程基本弄清楚故障的现象后,这时即可结合电路图分析故障的大致范围,然后采用相应的检测方法,找出故障点。
(5)更换元器件
故障点找出后,需要更换元器件。

⑽ 普通车床常见故障怎么处理解决

车床是生产中常见的机械生产加工装备,它集电力电子技术、电机技术、自动化控制技术、传感技术、自动检测技术、计算机控制技术、机床、液压及气压传动技术和加工工艺等于一体,是机电一体化的典型产品。
作为自动化设备,它性能优越,具有高精度、率和高适应性的特点,但也十分容易发生故障。一般而言,车床在机械加工车间约占机床总数的一半,这主要是因为它的应用范围很广,可以加工各种回转表面,包括端面、外圆、内圆、锥面等,它甚至还可以加工螺纹、回转沟槽、回转成型面和滚花等。车床结构简单,主要组成部件一般有床身、床头箱、变速箱、进给箱、光杆、丝杆、溜板箱、刀架、床腿和尾架等部分,它的工作原理主要是依靠主运动和进给运动,通过车刀和工件的相对运动,使被加工的部件毛坯被切削成具备一定几何形状、尺寸和表面质量的零件。然而,在普通车床在使用过程中,很可能会出现一些故障,若不及时排除就会直接影响生产的进行,并使车床的精度和使用寿命迅速下降。
因此,对车床进行故障诊断与维修是非常重要的。我们发现,导致车床发生故障的因素主要有以下几种:机械锈蚀、机械磨损失效、电子元器件老化、插件接触不良、电流电压波动、温度变化、机床本身有隐患或灰尘等。为了提高车床的使用效率,我们有必要认真分析、总结其发生故障的原因,摸索排除故障的方法,并做好车床的保养工作。
一、造成车床使用故障的原因
故障的表现形式是多种多样的,发生的原因也常常由很多因素综合形成。普通车床使用过程中常见的故障,就其性质大概可以分为车床本身运转不正常与车床加工工件产生缺陷2大类。造成车床使用故障的原因具体可以分为以下几种:
(一)零部件质量问题:车床本身的机械部件、电器元件等因自身质量原因而在工作中失灵,或者有些零件发生严重磨损,精度超差甚至已经损坏。
(二)安装和装配精度较差:车床安装、装配主要涉及溜板刮配,床身装配,溜板箱、进给箱及主轴箱的安装等,任何部分出现差错就有可能降低车床的精度。
(三)日常维护和保养不当:车床维护、保养的好坏可以直接影响工件的加工质量和生产效率。保养的内容主要是清洁、润滑和进行必要的调整,维护则是使车床保持良好状态、延长使用寿命、提高生产效率所必须进行的日常工作。
(四)使用不合理:不同的车床有着不同的技术参数,反映了其不同的加工范围和加工能力。如果在使用过程中没有严格按车床的加工范围和本工种操作规程来操作,就不能保证车床的合理使用。
二、车床使用故障的类型及解决方法
车床的故障类型很多,按发生故障的部件不同可分为主机故障和电气故障;按性质的不同可分为车床本身运转不正常和加工零件产生缺陷;按发生故障的系统部位不同,通常可分为电气系统故障、机械系统故障、液压(气压与液压大致相同)系统故障等等。下面就几类常见的车床故障及其排除方法进行简要的叙述。
(一)轴承类故障
传动轴是车床实现机械加工的核心部件,它在工作时承载着主要的载荷,所以是最容易发生故障的车床部件之一。如果车床主轴上单向推力球轴承等零部件产生损坏,机床用户可以准确地诊断并很快更换。如果传动轴断裂,机床用户一般可采用改大其直径尺寸、改进其内部结构、针对现场机床转速不同重新布局齿轮等方法来解决问题。
(二)主轴发热导致故障
在车床上,主轴一般都与滚动轴承或滑动轴承组装成一体,并以很高的转速旋转,从而产生较大热量。主轴轴承是主轴箱内的主要热源,如果它制造的热量没有及时排出,将导致轴承过热,使车床相应部位温度升高,从而产生热变形,严重时会使主轴与尾架不等高。这不仅影响车床本身精度和加工精度,而且会把轴承甚至主轴烧坏。主轴过热的原因可归纳为:主轴轴承间隙过小使摩擦力和摩擦热增加;在长期的全负荷车削中,主轴刚性降低,发生弯曲,传动不平稳而发热。排除该故障时应注意:要调整主轴轴承间隙使之合适;应控制润滑油的供给,疏通油路;尽量避免车床承担长期负荷。
(三)车床振动导致故障
车床在加工过程中产生振动是不可避免的,但是当振动十分剧烈时,不仅会降低被加工物品的加工精度,影响生产率,还可能加剧车床磨损,使刀具耐用度下降,这对硬质合金、陶瓷等制作的脆性刀具尤为明显。车床振动的原因有:工作时螺栓松动,安装不正确;胶带等旋转件的跳动太大,引起车床振动;主轴中心线的径向摆动过大。排除该故障时应注意:调整并紧固地脚螺栓;磨削刀具以保持切削性能;校正刀尖安装位置,使其略高于工作中心;校正胶带轮等旋转件的径向圆跳动;设法调整减小主轴摆动,若无法调整,可采用角度选配法来减小主轴摆动。
(四)噪音剧烈导致故障
噪音是车床发生故障的先兆,因此正确分析噪音产生的原因,对迅速找出故障并排除至关重要。车床开动之后,由于各运动副之间作旋转或往复直线运动,周期性地接触和分开,所以它们之间因相互运动会产生一定的振动。一般而言,噪音会随着温度的升高、负荷和磨损的增大、润滑不良等而增大。该故障的排除方法:可按运动副的接触情况调整、修复或更换零部件,使轴恢复应有的精度等;检查并疏通不畅通的管道,使需要润滑的部位有适量、清洁、符合规定要求的润滑油等。
(五)刀架出现常见故障
对于刀架的常见故障,如果刀盘不动,可能出现的问题是机械卡阻、刀架电机烧坏或接触器、控制继电器损坏。现场应逐步排查故障原因,缩小故障范围,最后准确定位故障。如果刀盘上某刀位连续回转不停,一般是某刀位对应的霍尔元件损坏所致,将其更换即可解决。如果刀盘换刀时不到位或过位,一般是磁钢位置在圆周方向相对霍尔元件太靠前或太靠后所致,可在刀架锁紧状态下用内六方扳手先松开磁钢盘,再转动适当角度,使磁钢与霍尔元件位置相对即可。
(六)溜板箱自动进给手柄容易脱开的故障
导致溜板箱自动进给手柄容易脱开的原因有:脱落蜗杆的弹簧压力不够;蜗杆托架上的控制板与杠杆的倾角改变,迫使进给箱的移动手柄跳开或交换齿轮脱开。相应故障的排除方法:调整脱落蜗杆的弹簧压力,使脱落蜗杆在正常负荷下不脱落;焊补控制板并将挂钩处修锐;调整弹簧,若定位孔磨损可铆补后重新打孔。
(七)床鞍下沉故障
普通车床经过较长时间使用后,常常会发生床鞍下沉的现象,导致车床工作不正常,严重影响车床工作效率,甚至造成车床完全丧失工作能力。造成床鞍下沉的原因主要有:床身导轨面磨损,床鞍下导轨面磨损。在日常修理及床鞍下沉不严重时,无需修复机床导轨,通常可改变纵走刀小齿轮技术参数及溜板箱上纵向移动刻度盘刻度,以改善纵走刀小齿轮与床身齿条的啮合状况。这种方法具有简便易操作、技术难度较小、修理周期较短等优点,不过其修理效果是有限的。在床鞍下沉严重或机床大修时,应采用恢复床鞍高度的方法。
(八)机械漏油故障
漏油同样是日常工作中经常出现的车床故障之一,它不仅会浪费油料,造成直接经济损失,还会影响车床的工作性能。同时,长期渗漏对车床的安装也会带来不良后果,甚至影响日后的工作。出现这种问题应该尽快处理,以免造成严重后果。
三、车床的维护保养策略
为了保证车床在工作时正常运转,有效预防和减少车床各类故障的发生,车床的维护保养成为必不可少的日常工作之一。
(一)应定期检修车床极易发生故障或故障发生率较高的零部件、系统,比如润滑系统等等,尽量在早期发现故障的端倪,并及时检修维护,从而将故障消除于无形,保障车床的正常运行。
(二)技术人员在日常的维护保养中,不仅仅要检查有可能发生故障的零部件,更重要的是要及时对车床的各个子系统、子模块进行功能测试,并进行系统地清理和维护,以提高各个零部件的工作可靠性,从日常维护保养做起,实现车床服役寿命的最大化。
(三)技术员要做好维护保养及故障检修的记录工作,应详细记录从故障发生、分析判断到排除全过程中出现的各种问题及采取的所有措施,还要记录涉及到的相关参数和软件。
四、结语
综上所述,车床故障原因及其排除方法是在长期实践中总结出来的,又经实践证明具有良好的经济和社会效益,因而十分切实可行。普通车床常见的机械故障在各种工作中经常会发生,工作人员只有熟练地掌握了车床的工作原理,具有丰富的现场经验,才能较快地找到故障,从而判断原因,并在最短的时间内将其排除。技术人员还应对自己的工作进行总结,并尝试摸索、学习自主修复和保养车床,从而将故障诊断与预防式检修相结合,最终真正实现车床服役寿命的最大化。

阅读全文

与机床电器发生故障应由什么来排除相关的资料

热点内容
路由器上有unknown连接是什么设备 浏览:525
启辰D50分离轴承多少钱 浏览:386
牙机雕刻机与电动工具 浏览:208
外汇期货交易实验装置 浏览:791
设备投资怎么算 浏览:95
好的摄影器材有哪些 浏览:463
温州新五金制品有限公司怎么样 浏览:293
锦州五金机电城出租出售 浏览:417
卡尔蔡司公司有哪些医学器材 浏览:261
重庆市机械凿打岩石套什么定额 浏览:557
阀门外面加个框是什么意思 浏览:756
会议设备系统哪里有 浏览:340
打印室需要哪些设备多少钱 浏览:577
通用型机床设备加工用于什么 浏览:290
书画工具箱套装 浏览:772
燃烧固体需要哪些仪器 浏览:969
2213ktn1是什么轴承 浏览:640
电脑固体硬盘怎么加机械硬盘 浏览:197
昆山汽车门板超声波焊接机怎么样 浏览:787
发说说怎么隐藏设备 浏览:804