㈠ 超声波测距的原理
超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即:
这就是所谓的时间差测距法。
由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为:
声速确定后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。
㈡ 老师您好,多辆车都采用超声波测距时会发生互相干扰,影响测距,形成误报警,请问有什么办法避免谢谢
用20KHz左右的小换能器,灵敏度都还不错,应该可以到60度左右的发射角度。但是这么宽的角度,距离还不小,容易受干扰。还有就是你的被测的障碍物是什么很关键。
㈢ 超声波测距最远能测多远
超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。测量范围在0.10-5.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。
㈣ 利用红外、激光、超声波进行测距的优缺点是什么
1.利用红外线测距或激光测距的原理是什么?
测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c =299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,典型的是WILD的DI-3000
需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。建筑行业有一种手持式的激光测距仪,用于房屋测量,其工作原理与此相同。
2.被测物体平面必须与光线垂直么?
通常精密测距需要全反射棱镜配合,而房屋量测用的测距仪,直接以光滑的墙面反射测量,主要是因为距离比较近,光反射回来的信号强度够大。与此可以知道,一定要垂直,否则返回信号过于微弱将无法得到精确距离。
3.若被测物体平面为漫反射是否可以?
通常也是可以的,实际工程中会采用薄塑料板作为反射面以解决漫反射严重的问题。
4.超声波测距精度比较低,现在很少使用。
㈤ 超声波测距离
一种用于汽车倒车避撞的超声波无线距离测量系统
Research of Ultrasonic Distance Measurement System
Abstract: A kind of ultrasonic distance measurement system used in the car is designed in this paper. The system includes the lower microcomputer system and the upper microcomputer system. The lower microcomputer system is mainly composed of ultrasonic transmitting circuit, receiving circuit ,wireless communicating mole and microcomputer. The data from the lower microcomputer system is transmitted to the upper microcomputer system by the wireless way. The design principle of ultrasonic distance measurement circuit is analyzed. The design method that the data is transmitted is also introced. The system is of the characteristics of measurement convenience, fast response and stability.
Key words : wireless communicating;microcomputer; ultrasonic;distance measurement;temperature compensation
摘 要:本文介绍一种用于汽车倒车避撞的超声波无线距离测量系统。系统由下位机与上位机两部分组成,下位机主要由超声波发射电路、超声波接收电路、无线收发模块及单片机组成,上位机由单片机、无线收发模块、显示电路等组成,下位机与上位机之间通过无线收发模块传输信息。文中分析了超声波测距电路的设计方法,叙述了采用无线通信技术实现数据远程传输的设计思路。该系统测量距离方便、灵活、稳定。
关键词:无线通信;单片机;超声波;距离测量;温度补偿
1. 引言
随着经济的发展,人们的生活水平越来越高。当今,对许多人来说,汽车进入家庭已不再是奢望,但随之而来的事情就是如何保证汽车使用过程中的安全问题,特别是如何防止汽车与其他物体碰撞的事情发生。据初步调查统计,l5%的汽车事故是由汽车倒车“后视”不良造成的。因此,增强汽车的后视能力,对于提高行车安全,减轻司机的劳动强度和心理压力,是十分重要的。如果车辆能适时检测与周围障碍物的距离并给出警告信息,使司机及早采取行动,可避免车辆相撞事故的发生。
随着科学技术的发展,用超声波进行无接触测量得到了广泛的应用。超声波是由机械振动产生的,可在不同介质中以不同的速度传播,它具有定向性好、能量集中、在传输过程中衰减较小,反射能力较强,在恶劣工作环境下具有一定的适应能力等优点。因此可用于液位测量、车辆自动导航[2]等领域。本文介绍一种基于无线数据传输方式的超声波车辆倒车避撞预警系统。
2. 超声波测距原理
发射的超声波遇到障碍物时就会发生反射,反射波可由接收器接收,这样只要测出超声波从发送点到反射回来的时间间隔Δt,然后根据公式(1)即可求出超生波从发射处到障碍物之间的距离。
S=CΔt/2 (1)
式中:S—超生波发射处与障碍物间的距离
C—超声波在介质中的传播速度
由于超声波是一种声波,其声速C受环境温度的影响,关系如式(2),因此使用超生波测量距离时应该采用温度补偿的方法对式(1)中的声速值加以校正。
C=331.4+ 0.61×T (2)
式中:T—环境温度
3. 硬件电路设计
如图1,硬件电路主要由单片机、超声波传感器、温度测量电路、无线收发模块等组成。
系统中单片机均采用ATMEL公司的AT89S51作为核心控制芯片,它与MCS-51的指令和引脚兼容[1],并且具有ISP在线编程功能,便于系统的设计和调试。
超声波传感器是超声波测距电路中的重要元件,其性能优劣直接影响到测距准确度和可靠性。通常超声波传感器有两类:一类是发射电路和接收电路互相独立的分体式超声波传感器,此类传感器测距有效范围比较大,但不具备防尘、防水性能。另一类是同时具有发射与接收功能的收发一体式超声波传感器,此类超声波测距有效范围比较小,但防尘、防水性能好。该系统选择分体式超声波传感器。
考虑到超声波具有指向性,本系统在汽车尾部左、右两个部位各安装一个超声波传
感器,适当调整安装位置,可准确测量汽
车后部障碍物。
如图1所示,下位机的P1.1、P1.2引脚分别用于控制两路超声波发射,INT0,INT1分别用于两路超声波信号检测,P1.3用于温度检测,串口RXD、TXD分别连接无线收发模块A的输入、输出端。同样,上位机串口RXD、TXD分别连接无线收发模块B的输入、输出端,当接收到下位机发送的测量数据时,下位机进行处理,然后显示测量结果,当车辆离障碍物的距离超过安全警戒线时发出报警信号。
实际安装时,该系统的下位机部分安装在汽车的尾部,上位机部分安装于驾驶室内。
3.1 超声波发射电路
超声波发射电路由超声波换能器(或称超声波振头)和超声波发生器两部分组成,电路如图2所示。系统中,超声波换能器的型号为CSB40T,它将超声波发生器提供的电信号转换为机械振动并发射出去。40KHz的超声波信号是利用NE555时基电路振荡产生的,振荡频率f ≈1.44/((R22+2×R23)×C21),通过R23调节信号频率,使之与换能器的40KHz固有频率一致。工作时,下位机通过P1.1口定时向超声波发生电路发出控制信号,超声波发生电路产生40KHz的调制脉冲,经换能器转换为超声波信号向前方空间发射。
3.2 超声波接收电路
超声波接收电路采用了集成电路CX20106A,CX20106A是日本索尼公司生产的红外遥控信号接收集成电路,它由前置放大、自动偏压控制、振幅放大、峰值检波和整形电路组成。该集成电路红外发射的频率38KHZ,超声波换能器的固有频率是40KHz,适当设计CX20106A外围电路参数,就可以将其用于超声波的接收放大电路,如图3所示,引脚1为CX20106A信号输入端,引脚2为CX20106A的RC网络连接端,引脚3为CX20106A检波电容连接端,
引脚4为CX20106A的接地端,引脚5为CX20106A带通滤波器中心设置端,引脚6为CX20106A积分电容连接端,引脚7为CX20106A信号输出端,引脚8为CX20106A供电电源端。
工作时,换能器CSB40T将所接收到的微弱声波振动信号转化成为电信号,送给CX20106A的输入端1,当CX20106A接收到信号时,7脚就会输出一个低电平,可用于下位机的中断信号源。当下位机接收到中断信号时,说明检测到了反射回来的超声波,下位机就进入中断状态,开始距离计算,并将计算结果发送给上位机。
3.3温度检测电路
温度检测电路采用DALLS公司的1-WIRE式总线器件DS18B20数字温度传感器,电路连接非常简单,但是必须保证时序与单片机严格同步。DS18B20具有9,10,11,和12位转换精度,未编程时默认精度为12位,测量精度一般为0.5℃,软件处理后可达0.1℃。温度输出以16位符号扩展的二进制数形式提供,低位在先,以0.0625℃/ LSB形式表达,高五位为扩展符号位。转换周期与转换精度设定有关,9位精度时,最大转换时间为93.75ms;12位精度时,最大转化时间为750ms。在本系统中采用默认的12位精度。关于DS18B20的使用方法可参考有关书籍。
3.4 数据无线收发模块
为避免在车内铺设电缆,系统的上位机部分与下位机部分采用无线的方式进行通信。
无线通信模块采用PTR2000,它是收发一体的工作在国际通用数传频段433MHz的无线通信模块,最高传输速率可以达到20Kbit/s,功耗低,待机状态下仅为8μA,可以直接与单片机的串口连接使用。PTR2000的引脚定义如下:TXE是发送控制端;PWR是节能控制端;DI是数据输入端;DO是数据输出端;CS是频道选择端。
硬件连接时,由单片机3个通用I/O口分别控制TXE、PWR、CS,单片机的串口与DI,DO连接。TXE为1时,为发送状态,TXE为0时,为接收状态。状态转换需要5毫秒。PWR为0时,为节电待机状态,此时模块无法进行接收或者发送。
无线通信具有无需布线、便于安装、灵活性强等诸多优点,但是数据在传输过程中难以避免的会产生误码,而且产生误码的几率要远远大于有线网络,并且误码的产生与多方面的因素有关,因此有很大的不确定性。所以必须采用一种差错控制机制,该系统采用停止等待协议来实现差错控制。此外,还采用校验机制以确定何时需要重传,CRC校验码的检错能力很强,它除了能检查出离散传输错误外,还能检查出突发传输错误。考虑到硬件和传输的开销问题,使用CRC16校验码。
PTR2000灵敏性很高,在无载波的情况下在接收端会产生随机的数据,因此需制定传输协议,格式如表1所示。通信协议中,必须在有效数据前加上两个或多个固定的前导字符作为同步信号,使得接收端能够辨别出有效数据的开始。
前导字符采用0xAA、0xAA、0xFF、0x00共4字节,其中前两个字节为同步信号,后两个字节为帧开始标志,接收端只要能够接收到0xAA、0xAA、0xFF与0x00,就可以认为新的一帧开始了。帧类型分为数据帧、有序数据帧、控制命令帧、确认帧等多种帧类型。帧编号为可选项,与帧类型相关,只有帧类型是有序数据帧时才有效。校验为2字节CRC16校验码。帧结束标志:为0x00。
4.软件设计
4.1下位机程序设计
下位机程序主要由数据通信程序、距离计算程序、温度补偿程序等组成。
距离计算程序流程图如图4所示。
温度补偿通常有两种方法:一种方法是每次按照公式C=331.4+ 0.61×T计算当前声速C,进行温度补偿。其特点是:根据当时的温度得到精确声速,从而计算得到的距离值也比较精确,但程序中牵涉到浮点数运算,由微处理器系统实现,难度较大。另一种方法是将温度与声速的对应关系列成温度---声速二维表,固化到系统中。温度补偿时,根据温度---声速表,查取最接近当前温度的那个温度所对应的声速值,此声速值即作为当前声速。其特点是:避开了复杂的浮点运算和浮点运算后各字节的提取操作,这样既保证了一定的精度要求,又可以避免浮点运算。因此本系统采用方法二进行温度补偿。程序流程图略。
4.2 上位机主程序设计
上位机与下位机通信时,上位机按照通信协议格式将开始测量命令发送给下位机,下位机接收到命令后就开始测量汽车离障碍物的距离,然后将测量结果发送给上位机,上位机先判断前导字符来确定是否为有效数据,若是有效数据,则解开封包进行相应操作,否则丢弃该数据包,上位机再按照同样的方式继续发命令、接收数据,直到接收到正确的数据为止。程序流程图如图5所示。
5 结束语
通过对系统硬件电路和软件的合理设计,本系统能在-20℃到50℃之间正常工作,三位数码管以厘米为单位显示距离,能准确判断距离汽车1.5米内的物体并及时报警,提高了汽车倒车的安全性。本文的创新点是在汽车防撞系统中采用了数据无线通信策略,减少了车内布线。
参考文献:
[1]MCS-51系列单片机应用系统设计,何立民,北京航空航天大学出版社,1990年.
[2]高准确度超声波测距仪的研制,赵珂,向瑛等,传感器技术,2003年第2期.
[3]无线通信在嵌入式系统中的应用,曹玲芝,石军等,微计算机信息,2005年第11期
作者简介:
曹玲芝,女,1965年生,硕士,副教授,主要从事远程测控技术研究。
联系方式:郑州轻工业学院电气信息工程学院办公室 邮编 450002
Email: [email protected]
任亚萍,女,1973年生,硕士生,主要从事计算机技术研究.
㈥ 关于超声波测距
你没有理解测距方法。
发射端不停的发送脉冲,同时开始记脉冲的个数。当收到脉冲回波时,停止计数。
比如从发射脉冲到接受到回波,已经发出了1000个脉冲,那么说明和被测物体的距离就是500个脉冲。脉冲的波长是已知的,那么500*λ。所以“输出脉冲的个数与被测距离成正比”。
测距不一定都是计时的,短距离内的时间测量比较有难度。碰巧我是搞测距的,嘿嘿,不过不是超声,是激光测距。
㈦ 超声波测距和红外测距的优缺点
超声波反映慢,对被测介质的颜色没有要求,但是对被测介质的材质有要求,不能是太松软的介质.
红外速度快,但是容易受光干扰,应该不同颜色的介质,反映不一样.
㈧ 超声波雷达测距的优点
超声波的能量消耗较缓慢,在介质中传播的距离比较远,穿透性强,测距的方法简单,成本低。
㈨ 超声波测量距离有哪些缺点
①超声波的传播速度相对电磁波来说慢得多,当汽车在高速公路上以每小时上百千米速度行驶时,超声波测距无法跟上车距的实时变化,误差大。
②方向性差,发散角大。由于发散使能量大大降低,另一方面使分辨力下降,导致误将邻车道的车辆或路边的物体作为测量目标。