导航:首页 > 制冷设备 > 超声波作用在固体上是什么作用

超声波作用在固体上是什么作用

发布时间:2022-07-01 01:13:18

① 超声波是什么有什么益处及害处

超声波治疗就是将超声波作用于人体,通过神经体液途径影响身体某一阶段或全身,使人体组织产生机械作用、热作用和空化作用,导致人体局部组织血流加速,血液循环改善,血管壁蠕动增加,细胞膜通透性加强,离子重新分布,新陈代谢旺盛,组织中氢离子浓度减低,PH值增加,酶活性增强,组织再生修复能力加强,肌肉放松,肌张力下降,疼痛减轻或缓解,从而达到治疗的作用。

② 超声波在固体中的传播与在空气中有什么主要区别

一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小. 一般来说,在固体中传播,速度快,衰减小,角度大,在空气中传播,速度慢,衰减大,角度小.

③ 超声波有什么用途

一、超声波治疗作用基础有下述三种效应:

1.机械效应:超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。

2.温热效应:人体组织对超声能量有比较大的吸收能力,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。

3.理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。

a.弥散作用:超声波可以提高生物膜的通透性,对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,改善组织营养。

b.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。

c.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。

d.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。

e.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。从而达到对受损细胞组织进行清理、激活、修复的过程。

④ 超声波的作用

超声波在军事医疗及工业中有较大的用途。它应用按功率的大小可分为功率超声和检测超声。功率超声的应用包括焊接、钻孔、粉碎、清洗、乳化等,它们多属于只发射不接受的超声设备。目前人们对超声加工的确切机理仍未透彻认识。检测超声在军事中的应用有雷达定位等。医用超音波可以看穿肌肉及软组织,使得这项技术常用来扫描之用。产科超音波也常用在怀孕时期的检查。医生可以利用超声波成像法透视身体,但由於超声波不能穿透骨头,所以虽然超声波对人体伤害比较低,但仍不能完全取代x光。典型超音波大约2mhz到10mhz的频率,较高频率通常用在泌尿道碎石振波。检测超声波设备有发射又有接受。
超声波亦可用於清洁用途,是目前清洗效果最佳的方式,一般认为是这利用了超声在液体中的“空化作用”。在深井可以用数百元购买超声波清洗机。超声波清洗机的清洁原理,在於利用超声波振动清水,使微细的气泡在水里产生,从而在气泡浮上水面时,把物件表面的油脂或污垢带走。清洗机所产生的超声波的频率约为20-40千赫,可应用在珠宝、镜片或其他光学仪器、牙医用具、外科手术用具及工业零件的清洁。
除可以发出较低频率的纯机械的超声哨子以外,一般超声设备有超声电源,换能器,变幅杆,工具头等构成。换能器有压电陶瓷换能器和磁致换能器两种。换能器和变幅杆的理论也可认为是一种专门的学科。

⑤ 超声波有什么用

超声波可以用来做B超,还有超声波碎石,超声波清洗.

⑥ 什么是超声波是干什么用的

超声波
我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20,000赫兹。因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用于测距,测速,清洗,焊接,碎石等

虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。

我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。

医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。

目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。

A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。

B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。

M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。

D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。

频率高于20000 Hz(赫兹)的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生
超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、
以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。
超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生
一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应:
①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。

超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
量子声学。
超声波还可以进行雷达探测.清洗较为精细的物品,如钟表,可以利用超声波来击碎病人体内胆结石,还可以利用超声波测距.

⑦ 超声波的用途

超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。

⑧ 超声振动作用在物体上会产生什么力

物体的振动能够产生的波动,频率在16Hz到20kHz之间的机械波能引起人类听觉,这个波段的机械波叫做声波。频率低于20kHz的叫做次声波,平率超过20kHz的叫做超声波,常见的超声波频率段为几十kHz到几十mHz之间。超声波和其他为人所熟知的波一样可以在液体、固体、气体中传播,并且在传播过程中会衰减。超声波具有声波的一般属性,在不同媒质中传播时,会在交界面上发生折射、反射现象,当两列超声波相遇时,会发生干涉现象。
超声波是一种会在弹性介质中的机械振荡,与声波相比,超声波的频率会高出很多、因而超声波的波长比较短,直线传播能力强于声波,具有方向性良好、束射性集中的特点。超声波通常可以分为横向振荡波和纵向振荡波。其中纵向超声波在实际应用中比较多见。超声波在固体和液体中传播时衰减速率较小,传播的距离较远,可采用较高频率的超声波;超声波在空气中传播时的频率衰减较快,所以一般采用较低频率超声波。不同类型、不同频率的超声传感器和发生器,配合实现不同功能的电路,就可以开发出不同类型的超声波应用设备,并在医疗、通迅、工业、国防等各方面获得广泛应用。
超声波在介质中进行传播时,会与传播介质发生多种效应,使得介质产生相应的机械、物理、电磁、化学变化,进而产生诸如机械的、电磁的、热能的、化学的相关效应:
(1)机械效应:超声波所产生的机械振动作用会使得固体介质分散化,液体介质产生乳化,凝胶体介质产生液化。流体介质在超声波作用下,产生驻波现象,导致流体中的微小悬浮粒子在机械力作用下聚集于波节上,在空间上表现为周期性的粒子聚集。磁致伸缩材料在超声波的机械振动作用下,会产生机械压缩,从而引起磁化。压电材料在超声波的机械振动作用下,会产生机械压缩,从而引起感应电荷。
(2)空化效应:超声波在液体中传播时,液体中的微小粒子在超声波作用下产生剧烈运动,从而产生很多微小气泡。这些小气泡会随着超声波的作用而瞬间膨胀并破裂,从而使得这些微小粒子产生非常强的高速碰撞,并产生极高的压强。这种微粒间剧烈的碰撞和摩擦作用,使得两种不相溶的液体产生乳化现象,同时还会使得液体的温度急剧升高,从而加速溶质的溶解过程,提高了液体的化学反应速度。这种液体在超声波作用下产生的效应叫做空化效应。
(3)热效应:超声波在介质中传播时会引起质点振动和粒子摩擦,部分超声波能量被粒子吸收转变为热能,介质温度就会相应升高。同时由于高频超声波携带的能量非常大,撞击作用时,能量被介质吸收而产生显著的热效应。
(4)化学效应:超声波的空化作用同时还会使得液体的温度急剧升高,从而加速溶质的溶解,加速液体的化学反应速度。超声波还可以对大量化学物质的聚合、分解和水解过程产生明显的催化和加速作用。超声波效应对电化学和光化学的某些过程也能产生明显的影响。

⑨ 超声波细胞粉碎机能否作用于固体物料!谢谢!!

超声波细胞粉碎机可以作用于固体物料,但固体物料必须悬浮于液体中,才可以的。
因为,超声波细胞粉碎机是利用超声波在液体中的分散效应,使液体产生空化的作用,从而使液体中的固体颗粒或细胞组织破碎的。

希望帮助到你,若有疑问,可以追问~~~
祝你学习进步,更上一层楼!(*^__^*)

⑩ 超声波是什么

声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。

网友见解:超声波是高于2000Hz的声波,人听不到,但自然界中却有许多动物在利用它生存。
网友见解: 超声波是频率超过人能听到的最高频20000赫兹的声波。超声波有两大特点。一是波长短,具有良好的定向性,作近似直线的传播,并能反射回来,在固体和液体内衰减比电磁波小;二是功率大,能量集中,携带的能量比一般的声波大得多,可形成高强度、剧烈振动,产生机械、光、热、电、化学和生物等各种效应。由于这两大特点,超声波在现代科技广泛应用,在医学、农业、军事等领域都有广泛的用途。
比如超声波在工业上有一个重要的用途,就是测量物体的温度。科学家发现,超声波有这样一个特性:在气体、液体、固体三种不同形态的物质中传播速度和这些物质的温度有关,温度不同,传播速度也不同。根据这个特性,科学家们制造声学温度计。声学温度计通过测量声波的传播速度来了解被测物的温度,可以测量高达17000℃ 的温度,也可以测量接近绝对零度(即-273.16℃)的低温。声学温度计还有一个突出的优点,就是在测温的时候不必和被测物直接接触。因此,在一般温度计不能发挥作用的地方,例如测量火箭喷射的高温气体和火红的钢水,声学温度计可以大显身手。

阅读全文

与超声波作用在固体上是什么作用相关的资料

热点内容
为什么超声波使ph升高 浏览:368
波浪能发电装置设计论文 浏览:746
怎么查支付宝设备登录 浏览:361
考斯特仪表盘怎么样 浏览:699
什么仪器测电器瓦数 浏览:922
自动加药装置速问普茵沃润 浏览:867
一体机自动剪线装置缝纫机 浏览:441
中国铸造网怎么登陆 浏览:789
单向制冷空调是什么 浏览:987
河南未来未家五金机电 浏览:417
55度能制冷的空调有什么牌子 浏览:336
博艺欧阀门有限公司怎么样 浏览:900
机械公司有什么部门和职位 浏览:222
活水直饮设备哪个牌子好 浏览:271
人防设备生产厂家有哪些 浏览:816
永城餐饮设备市场在哪里 浏览:489
机械硬盘要分区有多少 浏览:779
自动外径测量装置 浏览:259
天然气阀门开关改位置 浏览:669
英文开阀门怎么写 浏览:78