㈠ 超声波的特点是什么
束射特性
由于超声波的波长短,超声波射线可以和光线一样,能够反射、折射,也能聚焦,而且.遵守几何光学上的定律。即超声波射线从一种物质表面反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射,也就是要改变它的传插方向,两种物质的密度差别愈大,则折射也愈大。
吸收特性
声波在各种物质中传播时,随着传播距离的增加,强度会渐进减弱,这是因为物质要吸收掉它的能量。对于同一物质,声波的频率越高,吸收越强。对于一个频率一定的声波,在气体中传播时吸收最历害,在液体中传播时吸收比较弱,在固体中传播时吸收最小。
超声波的能量传递特性
超声波所以往各个工业部门中有广泛的应用,主要之点
还在于比声波具有强大得多的功率。为什么有强大的功率呢?因为当声波到达某一物资中时,由于声波的作用使物质中的分子也跟着振动,振动的频率和声波频率―样,分子振动的频率决定了分子振动的速度。频率愈高速度愈大。物资分子由于振动所获得的能量除了与分子的质量有关外,是由分子的振动速度的平方决定的,所以如果声波的频率愈高,也就是物质分子愈能得到更高的能量、超声波的频率比声波可以高很多,所以它可以使物资分子获得很大的能量;换句话说,超声波本身可以供给物质足够大的功率。
超声波的声压特性
当声波通入某物体时,由于声波振动使物质分子产生压缩和稀疏的作用,将使物质所受的压力产生变化。由于声波振动引起附加压力现象叫声压作用。
由于超声波所具有的能量很大,就有可能使物质分子产生显诸的声压作用、例如当水中通过一般强度的超声波时,产生的附加压力可以达到好几个大气压力。液体中存起着如此巨大的声压作用,就
会引起值得注意的现象。当超声波振动使液体分子压缩时,好象分子受到来直四面八方的压力;当超声波振动使液体分子稀疏时,好象受到向外散开的拉力,对于液体,它们比较受得住附加压力的作用,所以在受到压缩力的时候;不大会产生反常情形。但是在拉力的作用下,液体就会支持不了,在拉力集中的
地方,液体就会断裂开来,这种断裂作用特别容易发生在液体中存在杂质或气泡的地方,因为这些地方液体的强度特别
低,也就特别经受不起几倍于大气压力的拉力作用。由于发生断裂的结果,液体中会产生许多气泡状的小空腔,这种空泡存在的时间很短,一瞬时就会闭合起来。空腔闭合的时候会
产生很大的瞬时压力,一般可以达到几千甚至几万个大气压力。液体在这种强大的瞬时
㈡ 为什么超声频率越高,成像深度越浅
因为超声波频率越高,在传输过程中衰减越厉害,从而导致成像深度越浅
㈢ 超声波频率 波长 波速与什么有关系
频率是固定的,在同一频率底下,波长和材料的声速有关。波速是材料的特性。
v=λ/t
v=λf
f是频率,λ是波长,v是波速,t是周期
v与传播介质有关
t与振源有关
λ与v和t有关
超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大于人的听觉上限而得名。
㈣ 波长越长的超声波为什么穿透能力越强波长越长,频率越
波长长了以后,不容易被东西阻挡。所以它的穿透能力会强。这个去看看波得传播理论就说得很明白。
㈤ 超声波波长
超声波的波长很短,只有几厘米,甚至千分之几毫米。
超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。
与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,该特性就越显著。
(5)超声波频率越高波长越什么扩展阅读
超声在介质中前进时所产生的效应。(超声在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性。
可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。使细胞内部结构发生变化,导致细胞的功能变化,使坚硬的结缔组织延伸,松软。
超声波的机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能,因此具有超声波独特的治疗意义。
㈥ 超声波的特性
1、超声波在传播时,方向性强,能量易于集中;
2、超声波能在各种不同媒质中传播,且可传播足够远的距离;
3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗;
4、 超声波可在气体、液体、固体、固熔体等介质中有效传播;
5、 超声波可传递很强的能量;
6、 超声波会产生反射、干涉、叠加和共振现象。
(6)超声波频率越高波长越什么扩展阅读:
超声效应:
当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生一系列力学的、热学的、电磁学的和化学的超声效应,包括以下2种效应:
1、机械效应:超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。
超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化。
2、热效应:由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
参考资料来源:网络-超声波
㈦ 超声波频率越高,( )
指向角=70λ/D,λ=C/f,因此频率f越大,波长λ越小,指向角也越小,指向角小,方向性好。选B.
㈧ 超声波的频率高低与衰减、穿透力、波长的对应关系是怎样的
频率高,衰减大,穿透力差,波长短。反之亦然。
㈨ 波长和频率的关系是什么
波长和频率之间的关系是波长和频率成反比。
根据波速公式 V=λf 在同种介质中,波的传播速度相同,波长和频率的乘积不变,λ=v/f,波长和频率成反比,即频率越高,波长越短。
(9)超声波频率越高波长越什么扩展阅读
波长对波性质的度量
波长(或可换算成频率)是波的一个重要特征指标,是波的性质的量度。例如:声波可以从它的频率来量度,人耳可听的声波从20Hz到20kHz,相应的波长从17m到17mm不等;人眼的可见光从深红色的375THz频率,800nm波长,到紫色的750THz频率,400nm波长。
在讨论弹性波的传播时,会假设媒质是连续的,因为当波长远大于媒质分子之间的距离时,媒质中一波长的距离内,有无数个分子在陆续振动,宏观上看来,媒质就像是连续的。
但如果波源的频率极高,波长极小,当波长小到等于或小于分子间距离的数量级时,相距约为一波长的两个分子之间,不再存在其他分子,不能再认为媒质是连续的,也不能传播弹性波了。高度真空中分子间的距离极大,不能传播声波就是这个原因。
㈩ 超声波测距精度
对于第一个问题:
超声波测距,通常在10米以内,但也有个别厂家做到几十米甚至百米的。超声波测距有以下几个特点:1、频率越高,精度也越高,但检测距离越近(空气衰减增大);2、输出功率越高、灵敏度越高,检测距离也越远(虽然是废话,但我必须写上);3、通常检测角度小的,测距范围略远;4、以上因素所造成的影响加起来,可能没有被测物体带来的影响更大:例如一个刚性表面(例如钢板)和一根铁丝、或者在钢板表面铺满吸音绵、或者把钢板与探头法线夹角从垂直改为倾斜45度等等,这些因素所带来的影响最大的。这也许不太容易理解,如果把超声波比作可见光,那么刚性表面可以理解成镜子,要想让你发现距离很远的人,对方用镜子‘晃’你是最好不过的了。但如果把镜子罩上黑纸,或者把镜子倾斜45度所带来的影响,你我可想而知,超声波也一样。
第二个问题:
一个单片机上同时使用几个不同频率的超声波模块,这就是软件程序的问题,没有什么难度,大学生就可以做,我想你一定也没问题。关于测距模块,从20khz~400khz,测距范围从0.1m~30m这些都不难购到,技术也不是很难。问题是,你能找到这么多频率的探头么?虽然超声波探头的各种频率都有,但它是针对量程来划分的,同一个量程里,频率都很接近(例如3-10米测距基本都是40khz)。你要在同一个量程里找出4种不同频率来,恐怕是有难度的。当然你也可以用4种不同的频率来驱动同一种探头。可是,若4个频率中的某个频率与探头的中心频率差别大了(例如超过5%),会导致效率大幅减低,如果频率差别小了,识别、区分他们又有困难,例如对于一个40khz的探头,一般厂家规定的下限和上限也就是38khz~42khz,我们就算冒险用到37khz~43khz(从可靠性和稳定性考虑,我不赞成这么用),你需要区分37khz、39khz、41khz、43khz四种频率的反馈信号,如此以来,常规的测距电路是不能用了,你需要研究一种全新的测距方案来识别他们,而且不能影响正常的计时精度,我建议你参考一些微波雷达的技术。