导航:首页 > 制冷设备 > 超声波依据什么确定缺陷的大小

超声波依据什么确定缺陷的大小

发布时间:2022-04-21 04:38:00

① 超声波检测的原理

超声波检测是抄利用材料袭及其缺陷的声学性能差异对超声波传播波形反射情况和穿透时间的能量变化来检验材料内部缺陷的无损检测方法。

脉冲反射法在垂直探伤时用纵波,在斜射探伤时用横波。脉冲反射法有纵波探伤和横波探伤。在超声波仪器示波屏上,以横坐标代表声波的传播时间,以纵坐标表示回波信号幅度。

对于同一均匀介质,脉冲波的传播时间与声程成正比。因此可由缺陷回波信号的出现判断缺陷的存在;又可由回波信号出现的位置来确定缺陷距探测面的距离,实现缺陷定位;通过回波幅度来判断缺陷的当量大小 。

(1)超声波依据什么确定缺陷的大小扩展阅读:

超声波检测优点:

1、适用于金属、非金属和复合材料等多种制件的无损检测

2、缺陷定位较准确

3、对面积型缺陷的检出率较高

4、灵敏度高,可检测试件内部尺寸很小的缺陷

5、对人体及环境无害

6、不破坏样品

参考资料来源:网络-超声波检测

② 超声波如何判定缺陷

有缺陷的地方,也就是有裂纹、孔洞的地方,存在材料与空气界面,超声波在这些地方会强烈反射,于是探头会检测到回波。

在材料的边沿也会有回波,但是可以根据回波的时间计算出反射面的位置,在不是材料边沿的地方出现回波,就是有缺陷。

③ 超声波探伤依据什么确定缺陷的水平位置和垂直位置

用超声波束自零件表面由探头通至金内部,遇到缺陷与零件底面时就分别发生反射波来,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。超声波探伤仪的种类繁多,但脉冲反射式超声波探伤仪应用最广。脉冲反射式超声波探伤仪大部分都是A扫描式的,在A型探伤仪的基础上发展而成的 B型、C型探伤仪,可得到不同方向反射面的信
第一、工程项目交接,主要的内容: 

1、移交工程的文件和技术文件;

2、工程施工的图纸和设计文件;

3、工程交付使用的报告文件

4、固定的资产的交接的清单;

5、工程运行期间的处理的报告; 

6、设备的配置清单和设备分发祥表; 

7、工单的执行资料;

8、隐蔽工程的详细说明; 

第二、工程交接的注意事项: 

1、主要看各种的表格使用的是否完善; 

2、技术文件的资料是否齐全和准确; 

3、固定资产查看是否有三方的签字。

(3)超声波依据什么确定缺陷的大小扩展阅读

对于不同行业、不同类型的项目,国家或相应的行业主管部门出台有项目交接的规程或规范。

(1)对于个人作为项目业主(如外商投资的项目)的项目交接,由项目承约商与项目业主按合同进行移交。项目交接的范围除全部项目实体成果外,还包括完整的项目资料档案、项目合格证书、项目产权证书等。

(2)对于企(事)业单位作为项目业主的项目交接,由企业的法人代表代表项目业主进行项目交接工作。

(3)对于国家作为项目业主的项目交接,分两个步骤和过程进行:第一步,由项目承约商向项目业主进行项目验收和交接;第二步,由项目业主国家

④ 如何评定焊缝内部缺陷位置和大小

一、那么,我们究竟是如何利用超声波评定焊缝内部缺陷位置和大小? 目前焊接接头超声检测通常采用一种称为A型显示的超声波脉冲反射法,该反射法是根据缺陷反射回波声压的高低来评价缺陷的大小。 超声波检测仪可以测得并显示的回波声压的幅值,简称波幅,于是我们就根据波幅的高低来评价缺陷的大小了。 然而工件中的缺陷形状,性质各不相同(焊缝内部一般都有什么缺陷?),目前的常规超声检测技术还难以确定缺陷的真实大小和形状,即使回波声压相同的缺陷的实际大小可能相差很大,怎么克服这个技术难题呢? 于是,我们为解决这个制约超声检测可靠性的问题,特意引用了当量法。所谓当量法,是指在同样的检测条件下,当自然缺陷回波与某人工规则反射体回波等高时,则该人工规则反射体的尺寸就是此自然缺陷的当量尺寸。 此外,我们还面临一个问题:缺陷波幅高度除了和其大小有关,还与缺陷的距离有关,因为超声波存在扩散衰减,大小相同的缺陷由于距离不同,回波高度也不同。 扩散衰减:超声波在传播过程中,由于波束的扩散,使超声波的能量随距离增加而逐渐减弱的现象。 于是我们引入用于描述某一确定反射体回波高度随距离变化的关系曲线,用业内术语来说就是DAC曲线,即Distance Amplitude Correction Curve,直译为:距离波幅修正曲线,简称:距离波幅曲线。 我们就是通过DAC曲线来修正超声波传播过程中扩散衰减值,再结合当量法,就可以对不同距离、大小不一的缺陷进行有效比较和定位了。 二、实际工程应用中,我们如何结合当量法绘制DAC曲线呢? 国内外关于焊缝超声检测方法的标准,几乎都利用对比试块中已知尺寸的人工反射体来绘制DAC曲线,以此用于检测校准以及评估缺陷的当量尺寸。对比试块一般是一块长方体钢材,具有一定尺寸的人工反射体,试块与被检材料声学特性相似,内部杂质少,无影响使用的其他缺陷。 我工作常用的是RB-2对比试块,那是一块长方体钢材,在不同深度钻5个直径为3mm横通孔,适合厚度8~100mm的对接焊缝检测。 RB-2对比试块详细规格如下: 我所在行业由于没有制定对应的超声检测标准,所以采用了国家推荐标准GB/T11345-1989 《钢焊缝手工超声波探伤方法和探伤结果分级》,该标准所采用的是直径为3mm的横通孔人工规则反射体,横通孔具有轴对称特点,反射波幅比较稳定,有线性缺陷特征,一般代表焊缝内部有一定长度的裂纹、未焊透、未熔合和条状夹渣。 根据GB/T11345-1989的要求,焊缝超声检测的DAC曲线由选用的仪器、探头系统在对比试块上的实测数据绘制而成,以直径3mm标准反射体绘制的距离波幅曲线,即DAC基准线,即记录下同一尺寸大小的横通孔在不同深度距离时的反射波声压幅值,然后以深度距离(mm)为横坐标,波幅(dB)为纵坐标,再将各深度对应的波幅点平滑地连接起来。 每一个探头都需要通过RB-2对比试块实测直径为3mm的横通孔的反射波幅值,得到DAC基准曲线,可是谁也不会根据DAC基准曲线去评定缺陷的大小,因为其当量尺寸太大了,为直径为3mm的孔当量值,焊缝一般都不会出现如此大的孔洞吧。 因此我们需要根据不同级别的灵敏度进行DAC曲线的绘制,人为地降低基准DAC曲线,调低若干个dB值,一般按中级灵敏度调节,即将基准DAC调低16dB为评定线、基准DAC调低10dB为定量线、基准DAC调低4dB为判废线。 于是就可以得到下图的三条DAC曲线组: 评定线以上至定量线以下为I 区(弱信号评定区),定量线至判废线以下为II区(长度评定区),判废线及以上区域为III区(判废区)。一般情况下,我们对位于II区的反射源测长,然后根据长度进行评价,超过标准允许最大长度则判定为不合格,而对位于III区的反射源直接判不合格,无论其长度如何。 超声波检测仪上的DAC曲线,横坐标代表缺陷的深度值(mm),纵坐标代表波幅(dB)。在仪器上绘制DAC曲线是每个超声波无损检测人员的基本功,曲线以平滑过渡为佳。 下图是检测到缺陷的超声检测仪画面,这里显示的反射波位于DAC曲线的I 区(弱信号评定区),这里说明距离探头前端12.4mm处,存在一个埋深为6.7mm的弱信号反射源,有可能是微小气孔。

⑤ 超声波探伤 判断测试快是否有缺陷的依据是什么

依据是超声波遇到缺陷会反射,根据反射波的大小来判断缺陷的大小。

⑥ 超声检测技术中的缺陷定性方法

超声检测技术对缺陷定性评定的主要方法一.波形判断法(经验法)目前应用最广泛的是A扫描显示型超声脉冲反射式检测仪。经过长期的超声检测实践,许多超声检测人员对其大量接触的材料、产品及制造工艺有充分的了解,并通过大量的解剖分析验证,积累了丰富的经验,在检测时能通过A扫描显示型超声脉冲反射式探伤仪,根据示波屏上出现缺陷回波时的波形形状,例如视频显示或射频显示,起波速度,回波前沿的陡峭程度及回波后沿下降的速度(下降斜率),波尖形状,回波占宽以及移动探头时缺陷回波的变化情况(波幅、位置、数量、形状、动态包络等),还可以根据观察多次底波的次数,底波高度损失情况,再根据缺陷在被检件中的位置,分布情况,缺陷的当量大小(与反射率有关),延伸情况,结合具体产品、材料的特点和制造工艺作出综合判断,评估出缺陷的种类和性质。有时还可以通过改变发射超声波脉冲的频率、改变声束直径大小(采取聚焦或采用不同直径的探头等)来观察缺陷的回波变化特征,从而识别是材料中的冶金缺陷还是组织反射。在这方面已经有不少经验总结和资料报道,例如判断钢锻件中的白点、夹杂物、残余缩孔、粗晶、中心疏松、方框形偏析,以及焊缝中的气孔、夹渣、未焊透、未熔合、裂纹等等。必须指出,这种判断方法在很大程度上依赖超声检测人员的经验、技术水平和对特定产品、材料及制造工艺的充分了解,其局限性是很大的,难以推广成为通用的评定方法。此外,作为A扫描显示的缺陷回波所显示的缺陷信息也极其有限,主要显示的是波幅大小、位置和回波包络形状,而缺陷对超声响应的相位、频谱等重要信息则无法显示出来,但是后两者与缺陷性质和种类有着密切关系,这也正是目前广大超声检测人员致力研究探索的问题。下面举出一部分常见缺陷的回波特征:(1)钢锻件中的粗晶与疏松--多以杂波、丛状波形式或底波高度损失增大、底波反射次数减少等形式出现。(2)棒材的中心裂纹--在沿圆周面作360°径向纵波扫查时,由于裂纹的辐射方向性,其反射波幅有高低变化并有不同程度的游动,在沿轴向扫查时,反射波幅度和位置变化不大并显示有一定的延伸长度。(3)锻件中的裂纹--由于裂纹型缺陷内含物多有气体存在,与基体材料声阻抗差异较大,超声反射率高,缺陷有一定延伸长度,起波速度快,回波前沿陡峭,波峰尖锐,回波后沿斜率很大,当探头越过裂纹延伸方向移动时,起波迅速,消失也迅速。(4)钢锻件中的白点--波峰尖锐清晰,常为多头状,反射强烈,起波速度快,回波前沿陡峭,回波后沿斜率很大,在移动探头时回波位置变化迅速,此起彼伏,多处于被检件例如钢棒材的中心到1/2半径范围内,或者钢锻件厚度最大的截面的1/4~3/4中层位置,有成批出现的特点(与炉批号和热加工批有关)。当白点数量多、面积大或密集分布时,还会导致底波高度显著降低甚至消失。(5)锻件中的非金属夹杂物--多为单个反射信号,起波较慢,回波前沿不太陡峭,波峰较圆钝,回波后沿斜率不太大并且回波占宽较大。(6)钛合金锻件中的高密度夹杂物(例如钨、钼)--多为单个反射信号,回波占宽不太大,但较裂纹类要大些,回波前沿较陡峭,后沿斜率较大,当改变探测频率和声束直径时,其反射当量大小变化不大(如为大晶粒或其他组织反射在这种情况下回波高度将有显著变化)。(7)铸件或焊缝中的气孔--起波快但波幅较低,有点状缺陷的特征。(8)焊缝中的未焊透--多为根部未焊透(如V型坡口单面焊时钝边未熔合)或中间未焊透(如X型坡口双面焊时钝边未熔合),一般延伸状况较直,回波规则单一,反射强,从焊缝两侧探伤都容易发现。(9)铸件或焊缝中的夹渣--反射波较紊乱,位置无规律,移动探头时回波有变化,但波形变化相对较迟缓,反射率较低,起波速度较慢且后沿斜率不太大,回波占宽较大。一般在可能的情况下,为了进一步确认缺陷性质,还应采用其他无损检测手段,例如X射线照相(检查内部缺陷)、磁粉和渗透检验(检查表面缺陷)来辅助判断。二.根据回波相位识别反射体根据声压反射率公式:rp=Z2cosα-Z1cosβ/Z2cosα+Z1cosβ
式中:Z1-第一介质(被检材料)的声阻抗;Z2-第一介质(缺陷)的声阻抗;α-入射角;β-反射角
当超声波垂直入射时,cosα=cosβ=1,当入射波与反射波同为一种波型时,α=β,上述公式简化为:rp=Z2-Z1/Z2+Z1
即超声波在被检材料中投射到缺陷上时,在界面的声反射大小取决于两者声阻抗差值,并在Z2<Z1的情况下,回波相位与入射波反相,从而可以利用回波与入射波的相位关系识别例如裂纹或其他反射体。
如图1(上)所示,使用平底孔(含空气)调整起始灵敏度时,显示的射频回波相位与金属材料中的入射波相位相反,而对于裂纹、非金属夹杂物等缺陷,情况相似,即缺陷回波与平底孔回波相位相同(图1中)。如果是高密度夹杂物(例如钨、钼等)缺陷时,则缺陷回波与平底孔回波相位相反,即Z缺>Z基时,回波与入射波同相,与平底孔回波反相;Z缺<Z基时,回波与入射波反相,与平底孔回波同相。(Z缺为缺陷声阻抗,Z基为基体材料声阻抗)。
另一种利用回波射频显示正向与负向最大振幅关系识别焊缝中裂纹类危险缺陷的方法如图2所示。
应当说明的是,上述两种方法都需要能在示波屏上以较大程度(比例)展宽脉冲信号的超声探伤仪,并应能作射频显示,但目前常用的一般便携式超声探伤仪在这方面的应用还受到一定限制。图2 射频显示波形正负振幅关系法
A-缺陷回波负向最大振幅;B-缺陷回波正向最大振幅
A/B>1--裂纹类缺陷;A/B<1--其他反射体三.根据视频显示波形的形状判别缺陷性质这是在经验法的基础上,通过定量测定缺陷回波的前沿上升时间(t1),脉冲持续时间(t2)和脉冲下降时间(t3),从而对缺陷性质进行判别的方法,见图3所示。
首先应对示波屏水平基线刻度以0.1μs或1μs分划,可以使用厚度2.5英寸(63.6mm)的纯铝平面试块(CL=6.35mm/μs),使第一、二次底波前沿分别对准总长100mm的水平线刻度上的50和100mm,此时水平基线刻度每1mm代表声波传播时间为0.4μs(往返时间),使缺陷回波高度为100%满刻度,读取90%满刻度线和20%满刻度线与回波包络线交点所对应的t1、t2和t3三个时间(见图3)。
对于裂纹类缺陷(类似镜面反射),其t1小,t2较非平面缺陷的t2要小;
对于疏松、夹杂类缺陷,由于缺陷周围不规则界面的弥散特征,使t3较长,并且t1、t2也较裂纹类缺陷的大。这种方法与经验法判断含气体的裂纹类缺陷回波的前沿陡峭、回波占宽较小、回波后沿斜率较大的特点是相应的,但是用这种方法可以更定量地判断,不过其具体定量值尚需做大量的实验验证工作后确定。四.缺陷回波的频谱分析缺陷回波的频谱包络形状与缺陷几何形状及取向,以及缺陷尺寸与超声波长的比值密切相关,因此可以通过向缺陷发射宽频带(窄脉冲)超声波并对接收到的回波信号频谱进行分析从而判断缺陷种类和性质。在这方面已有不少资料报道,但主要还是以识别反射体的几何形状为基础,例如识别是平面缺陷还是体积缺陷,是倾斜取向还是垂直取向的缺陷,利用不同形状与取向缺陷的反射与频率的依从关系,能较好地确定缺陷的种类和性质。我们知道,在探伤仪上显示的是缺陷的合成传输函数:F合=F1·F2·F32·F42·F5·F62式中:F1-发生器传输函数;F2-放大器传输函数;F3-探头传输函数;F4-被检件传输函数;F5-缺陷传输函数;F6-耦合传输函数。其中F3、F4和F6对超声信号有两次(往返)影响,故取其平方值。在一般情况下,缺陷传输函数F5又是下述缺陷各参数的函数ψ:F5=ψ{K·N<sub>b</sub>·S<sub>b</sub>·Q<sub>b</sub>·R<sub>b</sub>}式中:K-缺陷坐标(位置);Nb-缺陷性质;Sb-缺陷面积;Qb-缺陷取向;Rb-缺陷内含物(填充物)在用普通单频超声法向工件发射超声脉冲和接收反射超声脉冲时,缺陷内含物的脉冲频率保持不变,因此电路和声路部分所有传输函数都不带有缺陷信息,成了窄频滤波器,并由于它们彼此的振幅频率特性有显著不同,而使包含在F5中的大部分缺陷信息消失在其他传输函数中。利用频谱法可以比普通单频法大大增加有关缺陷性质和大小的信息量。对于K、Qb和Sb,容易用普通方法确定,困难的是确定Nb和Rb。可以把缺陷反射脉冲的频谱设为Rx,发射脉冲频谱为Et,而缺陷传输函数设为ht,则:Rx=Et·ht当已知与给定方向有关的函数Rx后,虽然还不能确定缺陷的全部特征,但已能对缺陷的一般形状,特别是对缺陷的取向提供有用的资料。因此,可以利用宽频带(窄脉冲)探头,并使发射频谱尽可能规则,则缺陷回波频谱将随缺陷的形状和取向而变化,从而有助于判断出缺陷的种类和性质。超声检测技术对缺陷定性评定的其他方法1.超声C扫描和B扫描这是将直通回波以线型方式显示缺陷的平面投影形状(C扫描)或缺陷在深度截面上反射面的平直、弯曲,即反射界面的形状(B扫描),从而帮助判断缺陷的种类和性质。2.超声全息借助全息原理,将缺陷反射的大量信息数据处理成三维空间立体图像显示以辅助判断。3.利用电子计算机处理缺陷回波信号目前国内外均在研究并试制出电脑化超声波探伤仪。但是常用的是与频谱分析结合使用或作为超声探测程序控制来使用,不过相信很快将有突破性发展。

⑦ 如何确定超声波探伤缺陷的当量大小 斜探头

超声波探伤超声波发射接收都通探实现探种类结构型式探伤前应根据检象形状、衰减技术要求选择探探选择包括探型式、频率、晶片尺寸斜探K值选择等
1.探型式选择
用探型式纵波直探、横波斜探表面波探、双晶探、聚焦探等般根据工件形状能现缺陷部位、向等条件选择探型式使声束轴线尽量与缺陷垂直
纵波直探能发射接收纵波束轴线垂直于探测面主要用于探测与探测面平行缺陷锻件、钢板夹层、折叠等缺陷
横波斜探通波形转换实现横波探伤主要用于探测与深测面垂直或定角缺陷焊缝未焊透、夹渣、未溶合等缺陷
表面波探用于探测工件表面缺陷双晶探用于探测工件近表面缺陷聚焦探用于水浸探测管材或板材
2.探频率选择
超声波探伤频率O.5~10MHz间选择范围般选择频率应考虑索
(1)由于波绕射使超声波探伤灵敏度约提高频率利于发现更缺陷
(2)频率高脉冲宽度辨力高利于区相邻缺陷
(3) 知频率高波短则半扩散角声束指向性能量集利于发现缺陷并缺陷定位
(4) 知频率高波短近场区度探伤利
(5) 知频率增加衰减急剧增加
由析知频率离低探伤较影响频率高灵敏度辨力高指向性探伤利频率高近场区度衰减探伤利实际探伤要全面析考虑各面索合理选择频率般保证探伤灵敏度前提尽能选用较低频率
于晶粒较细锻件、轧制件焊接件等般选用较高频率用2.5~5.0MHz晶粒较粗铸件、奥氏体钢等宜选用较低频率用O.5~2.5MHz频率高引起严重衰减示波屏现林状波信噪比降甚至探伤
3.探晶片尺寸选择科朴道超声波探伤仪
探圆晶片尺寸般φ10~φ30mm晶片探伤定影响选择晶片尺寸要考虑素
(l) 知晶片尺寸增加半扩散角减少波束指向性变超声波能量集探伤利
(2)由N=等知晶片尺寸增加近场区度迅速增加探伤利
(3)晶片尺寸辐射超声波能量探未扩散区扫查范围远距离扫查范围相变发现远距离缺陷能力增强
析说明晶片声柬指向性近场区度、近距离扫查范围远距离缺陷检能力较影响实际探伤探伤面积范围工件提高探伤效率宜选用晶片探探伤厚度工件效发现远距离缺陷宜选用晶片探探伤型工件提高缺陷定位定量精度宜选用晶片探探伤表面太平整曲率较工件减少耦合损失宜选用晶片探
4.横渡斜探K值选择
横波探伤探K值探伤灵敏度、声束轴线向波声程(入射点至底面反射点距离)较影响由图l.39知于用机玻璃斜探探伤钢制工传βs=40°(K=O.84)左右声压往复透射率高即探伤灵敏度高由K=tgβs知K值βs波声程实际探伤工件厚度较应选用较K值便增加波声程避免近场区探伤工件厚度较应选用较K值

面给用超声波斜探选择案参考:
1.斜探K值与角度应关系
NO. K值 应角度
1 K1 应45度
2 K1.5 应56.3度
3 K2 应63.4度
4 K2.5 应68.2度
5 K3 应71.6度

2.焊缝探伤超声波探选择案参考
编号 测工件厚度 选择探斜率 选择探斜率
1 4—5mm 6×6 K3 锈钢:1.25MHz (同)
2 6—8mm 8×8 K3 铸铁:0.5—2.5 MHz(同)
3 9—10mm 9×9 K3 普通钢:5MHz (同)
4 11—12mm 9×9 K2.5
5 13—16 mm 9×9 K2
6 17—25 mm 13×13 K2
7 26—30 mm 13×13 K2.5
8 31—46 mm 13×13 K1.5
9 47—120 mm 13×13( K2—K1)
10 121—400 mm 18×18 ( K2—K1)
20×20 ( K2—K1)
感觉这样的提问没有意义
感觉这样的提问没有什么意义哈

⑧ 超声波探伤中怎样看缺陷的大小

超声检测技术中的缺陷定性方法 夏纪真内容提要:本文对目前超声检测技术中缺陷定性评定所应用的主要方法进行了综合介绍。 超声无损检测技术中的三大关键问题是缺陷的定位、定量和定性评定。迄今为止,广大的超声检测技术人员已作了大量实验研究工作,在对缺陷的定位和定量评定方面取得了很大进展,并逐步趋于成熟与完善。如在众多有关超声检验的技术规范中,对诸如确定缺陷埋藏深度及在探测面上的投影位置,评定缺陷的当量大小,延伸长度以及缺陷投影面积等都有明确的方法规定,对保证产品构件的质量和安全使用具有重大作用。然而,在对缺陷定性评定方面却存在相当大的困难,这主要是由于缺陷对超声波的反射特性取决于缺陷的取向、几何形状、相对超声波传播方向的长度和厚度、缺陷的表面粗糙度、缺陷内含物以及缺陷的种类和性质等等,并且还与所使用的超声检测系统特性及显示方式有关,因此,在超声检测时所获得的缺陷超声响应是一个综合响应。在目前常用的超声检测技术上还难以将上述各因素从综合响应中分离识别出来,给定性评定带来了困难。 在实际检测过程中,由于难以判明缺陷性质,往往会使一些含有对使用条件是非危险性的、或者在后续加工过程中可以被改善甚至消除的缺陷的产品被拒收,造成不必要的浪费,同时也可能忽视了一些含有危险性缺陷(如裂纹类缺陷)的产品,对产品的安全使用造成潜在威胁。 本文的目的是试图把迄今为止广大超声检测人员在缺陷定性评定方面进行的主要研究工作做一综合介绍,以期促进对缺陷定性评定方法研究的发展。

⑨ 超声波探伤缺陷如何判断大小

根据扫描出的不同波形,确定缺陷的大小,形态等主要还要看你的经验

⑩ 超声波探伤原理和方法,缺陷判断

利用超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。超声波探伤仪的种类繁多,但脉冲反射式超声波探伤仪应用最广。脉冲反射式超声波探伤仪大部分都是a扫描式的,在a型探伤仪的基础上发展而成的
b型、c型探伤仪,可得到不同方向反射面的信号。网络一下oupu17

阅读全文

与超声波依据什么确定缺陷的大小相关的资料

热点内容
路由器上有unknown连接是什么设备 浏览:525
启辰D50分离轴承多少钱 浏览:386
牙机雕刻机与电动工具 浏览:208
外汇期货交易实验装置 浏览:791
设备投资怎么算 浏览:95
好的摄影器材有哪些 浏览:463
温州新五金制品有限公司怎么样 浏览:293
锦州五金机电城出租出售 浏览:417
卡尔蔡司公司有哪些医学器材 浏览:261
重庆市机械凿打岩石套什么定额 浏览:557
阀门外面加个框是什么意思 浏览:756
会议设备系统哪里有 浏览:340
打印室需要哪些设备多少钱 浏览:577
通用型机床设备加工用于什么 浏览:290
书画工具箱套装 浏览:772
燃烧固体需要哪些仪器 浏览:969
2213ktn1是什么轴承 浏览:640
电脑固体硬盘怎么加机械硬盘 浏览:197
昆山汽车门板超声波焊接机怎么样 浏览:787
发说说怎么隐藏设备 浏览:804