『壹』 哪些因素影响机床加工精度
机床加工精度受以下因素影响:
1、机床误差
机床误差是指机床的制造误差、安装误差和磨损。主要包括机床导轨导向误差、机床主轴回转误差、机床传动链的传动误差。
2、加工原理误差
加工原理误差是指采用了近似的刀刃轮廓或近似的传动关系进行加工而产生的误差。加工原理误差多出现于螺纹、齿轮、复杂曲面加工中。
3、调整误差
机床的调整误差是指由于调整不准确而产生的误差。
4、工件内部的残余应力
残余应力的产生:毛胚制造和热处理过程中产生的残余应力;冷校直带来的残余应力;切削加工带来的残余应力。
5、加工现场环境影响
加工现场往往有许多细小金属屑,这些金属屑如果存在与零件定位面或定位孔位置就会影响零件加工精度,对于高精度加工,一些细小到目视不到的金属屑都会影响到精度。这个影响因素会被识别出来但并无十分到位的方法来杜绝,往往对操作员的作业手法依赖很高。
6、夹具的制造误差和磨损
夹具的误差主要指:定位元件、刀具导向元件、分度机构、夹具体等的制造误差;夹具装配后,以上各种元件工作面间的相对尺寸误差;夹具在使用过程中工作表面的磨损。
7、刀具的制造误差和磨损
刀具误差对加工精度的影响根据刀具的种类不同而异。
8、工艺系统受力变形
工艺系统在切削力、夹紧力、重力和惯性力等作用下会产生变形,从而破坏了已调整好的工艺系统各组成部分的相互位置关系,导致加工误差的产生,并影响加工过程的稳定性。主要考虑机床变形、工件变形以及工艺系统的总变形。
9、工艺系统的热变形
在加工过程中,由于内部热源(切削热、摩擦热)或外部热源(环境温度、热辐射)产热使工艺系统受热而发生变形,从而影响加工精度。在大型工件加工和精密加工中, 工艺系统热变形引起的加工误差占加工总误差的40%-70%。
(1)机床误差指什么意思扩展阅读:
加工精度根据不同的加工精度内容以及精度要求,采用不同的测量方法。一般来说有以下几类方法:
1、按是否直接测量被测参数,可分为直接测量和间接测量。
直接测量:直接测量被测参数来获得被测尺寸。例如用卡尺、比较仪测量。间接测量:测量与被测尺寸有关的几何参数,经过计算获得被测尺寸。
显然,直接测量比较直观,间接测量比较繁琐。一般当被测尺寸或用直接测量达不到精度要求时,就不得不采用间接测量。
2、按量具量仪的读数值是否直接表示被测尺寸的数值,可分为绝对测量和相对测量。
绝对测量:读数值直接表示被测尺寸的大小、如用游标卡尺测量。
相对测量:读数值只表示被测尺寸相对于标准量的偏差。如用比较仪测量轴的直径,需先用量块调整好仪器的零位,然后进行测量,测得值是被侧轴的直径相对于量块尺寸的差值,这就是相对测量。一般说来相对测量的精度比较高些,但测量比较麻烦。
3、按被测表面与量具量仪的测量头是否接触,分为接触测量和非接触测量。
接触测量:测量头与被接触表面接触,并有机械作用的测量力存在。如用千分尺测量零件。
非接触测量:测量头不与被测零件表面相接触,非接触测量可避免测量力对测量结果的影响。如利用投影法、光波干涉法测量等。
4、按一次测量参数的多少,分为单项测量和综合测量。
单项测量;对被测零件的每个参数分别单独测量。
综合测量:测量反映零件有关参数的综合指标。如用工具显微镜测量螺纹时,可分别测量出螺纹实际中径、牙型半角误差和螺距累积误差等。
5、按测量在加工过程中所起的作用,分为主动测量和被动测量。
主动测量:工件在加工过程中进行测量,其结果直接用来控制零件的加工过程,从而及时防治废品的产生。
被动测量:工件加工后进行的测量。此种测量只能判别加工件是否合格,仅限于发现并剔除废品。
6、按被测零件在测量过程中所处的状态,分为静态测量和动态测量。
静态测量;测量相对静止。如千分尺测量直径。
动态测量;测量时被测表面与测量头模拟工作状态中作相对运动。
『贰』 机床的几何误差包括哪些
1.1 机床的原始制造误差
是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。
1.2 机床的控制系统误差
包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。
1.3 热变形误差
由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。
1.4切削负荷造成工艺系统变形所导致的误差
包括机床、刀具、工件和夹具变形所导致的误差。这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。
1.5 机床的振动误差
在切削加工时,数控机床由于工艺的柔性和工序的多变,其运行状态有更大的可能性落入不稳定区域,从而激起强烈的颤振。导致加工工件的表面质量恶化和几何形状误差。
1.6 检测系统的测试误差
包括以下几个方面:
(1)由于测量传感器的制造误差及其在机床上的安装误差引起的测量传感器反馈系统本身的误差;
(2)由于机床零件和机构误差以及在使用中的变形导致测量传感器出现的误差。
1.7 外界干扰误差
由于环境和运行工况的变化所引起的随机误差。
1.8 其它误差
如编程和操作错误带来的误差。
上面的误差可按照误差的特点和性质,归为两大类:即系统误差和随机误差。
数控机床的系统误差是机床本身固有的误差,具有可重复性。数控机床的几何误差是其主要组成部分,也具有可重复性。利用该特性,可对其进行“离线测量”,可采用“离线检测——开环补偿”的技术来加以修正和补偿,使其减小,达到机床精度强化的目的。
随机误差具有随机性,必须采用“在线检测——闭环补偿”的方法来消除随机误差对机床加工精度的影响,该方法对测量仪器、测量环境要求严格,难于推广。
2几何误差补偿技术
针对误差的不同类型,实施误差补偿可分为两大类。随机误差补偿要求“在线测量”,把误差检测装置直接安装在机床上,在机床工作的同时,实时地测出相应位置的误差值,用此误差值实时的对加工指令进行修正。随机误差补偿对机床的误差性质没有要求,能够同时对机床的随机误差和系统误差进行补偿。但需要一整套完整的高精度测量装置和其它相关的设备,成本太高,经济效益不好。文献[4] 进行了温度的在线测量和补偿,未能达到实际应用。系统误差补偿是用相应的仪器预先对机床进行检测,即通过“离线测量”得到机床工作空间指令位置的误差值,把它们作为机床坐标的函数。机床工作时,根据加工点的坐标,调出相应的误差值以进行修正。要求机床的稳定性要好,保证机床误差的确定性,以便于修正,经补偿后的机床精度取决于机床的重复性和环境条件变化。数控机床在正常情况下,重复精度远高于其空间综合误差,故系统误差的补偿可有效的提高机床的精度,甚至可以提高机床的精度等级。迄今为止,国内外对系统误差的补偿方法有很多,可分为以下几种方法:
2.1单项误差合成补偿法
这种补偿方法是以误差合成公式为理论依据,首先通过直接测量法测得机床的各项单项原始误差值,由误差合成公式计算补偿点的误差分量,从而实现对机床的误差补偿。对三坐标测量机进行位置误差测量的当属Leete, 运用三角几何关系,推导出了机床各坐标轴误差的表示方法,没有考虑转角的影响。较早进行误差补偿的应是Hocken教授,针对型号Moore 5-Z(1)的三坐标测量机,在16小时内,测量了工作空间内大量的点的误差,在此过程中考虑了温度的影响,并用最小二乘法对误差模型参数进行了辨识。由于机床运动的位置信号直接从激光干涉仪获得,考虑了角度和直线度误差的影响,获得比较满意的结果。1985年G. Zhang成功的对三坐标测量机进行了误差补偿。测量了工作台平面度误差,除在工作台边缘数值稍大,其它不超过1μm,验证了刚体假设的可靠性。使用激光干涉仪和水平仪测量得的21项误差,通过线性坐标变换进行误差合成,并实施了误差补偿。X-Y平面上测量试验表明,补偿前,在所有测量点中误差值大于20μm的点占20%,在补偿后,不超过20%的点的误差大于2μm,证明精度提高了近10倍。
除了坐标测量机的误差补偿以外,数控机床误差补偿的研究也取得了一定的成果。在1977年Schultschik教授运用矢量图的方法,分析了机床各部件误差及其对几何精度的影响,奠定了机床几何误差进一步研究的基础。Ferreira和其合作者也对该方法进行了研究,得出了机床几何误差的通用模型,对单项误差合成补偿法作出了贡献。J.Ni et al更进一步将该方法运用于在线的误差补偿,获得了比较理想的结果。Chen et al建立了32项误差模型,其中多余的11项是有关温度和机床原点误差参数,对卧式加工中心的补偿试验表明,精度提高10倍。Eung-Suk Lea et al几乎使用了同G. Zhang一样的测量方法,对三坐标Bridge port铣床21项误差进行了测量,运用误差合成法得出了误差模型,补偿后的结果分别用激光干涉仪和Renishaw的DBB系统进行了检验,证明机床精度得以提升。
2.2误差直接补偿法
这种方法要求精确地测出机床空间矢量误差,补偿精度要求越高,测量精度和测量的点数就要求越多,但要详尽地知道测量空间任意点的误差是不可能的,利用插值的方法求得补偿点的误差分量,进行误差修正,该种方法要求建立和补偿时一致的绝对测量坐标系。
1981年,Dufour和Groppetti在不同的载荷和温度条件下,对机床工作空间点的误差进行了测量,构成误差矢量矩阵,获得机床误差信息。将该误差矩阵存入计算机进行误差补偿。类似的研究主要有A.C.Okafor et al,通过测量机床工作空间内,标准参考件上多个点的相对误差,以第一个为基准点,然后换算成绝对坐标误差,通过插值的方法进行误差补偿,结果表明精度提高了2~4倍。Hooman则运用三维线性(LVTDS)测量装置,得到机床空间27个点的误差(分辨率0.25μm,重复精度1μm),进行了类似的工作。进一步考虑到温度的影响,每间隔1.2小时测量一次,共测量8次,对误差补偿结果进行了有关温度系数的修。这种方法的不足之处是测量工作量大,存储数据多。目前,还没有完全合适的仪器,也限制了该方法的进一步运用和发展。
2.3相对误差分解、合成补偿法
大多数误差测量方法只是得到了相对的综合误差,据此可以从中分解得到机床的单项误差。进一步利用误差合成的办法,对机床误差补偿是可行的。目前,国内外对这方面的研究也取得一定进展。
2000年美国Michigan大学Jun Ni教授指导的博士生Chen Guiquan做了这样的尝试,运用球杆仪(TBB)对三轴数控机床不同温度下的几何误差进行了测量,建立了快速的温度预报和误差补偿模型,进行了误差补偿。Christopher运用激光球杆仪(LBB),在30分钟内获得了机床的误差信息,建立了误差模型, 在9个月的时间间隔内,对误差补偿结果进行了5次评价,结果表明,通过软件误差补偿的方法可
『叁』 数控机床误差测量及补偿方面的知识
你这问的真的好复杂啊,不敢说定义,只是根据自己的经验聊几句,欢迎高手斧正。
几何误差:指的是理论几何形状与加工之间的误差。这是由加工母机决定的,是机床固有的误差。
安装误差:是在安装过程中引起的误差,是在几何误差上叠加的,这个可以降低,但考虑成本与工效,有一个适合的范围值。
定位误差:是指机床运动静止后,实际运动距离跟理论运动距离的差值。有定位精度、重复定位精度两个指标。
位置误差:包括定向、定位、跳动三种,主要指工件跟理论值得偏差。
运动误差:主要是在直线或插补运动中,跟理想值的偏差。
静止误差:在静止状态下,受到外力后发生的变化,一般是报警值。
关系是这样的,几何误差、安装误差是在机床加工、组装过程中产生的,位置误差是两者在精度方面的综合反映,定位误差是直线传动机构配合电气修正后的综合误差,修正包括反向间隙补偿,高级点的包括激光修正补偿。运动误差是插补运动修正后的误差,常见的是循圆补偿。静止误差则是外力对机床运动轴的干扰,这个没见到过指标,只看到过位置报警参数。
英文的意思应该是:位置跟随误差错误,应该是伺服编码器反馈与指令不一致超出一定范围的报警。
『肆』 数控车床误差是由哪些原因造成的
数控车床是目前使用较为广泛的数控机床之一。它主要用于轴类零件或盘类零件的内外圆柱面、任意锥角的内外圆锥面、复杂回转内外曲面和圆柱、圆锥螺纹等,并能进行切槽、钻孔、扩孔、铰孔及镗孔等。下面简单介绍下出现误差的原因和解决方法。
一、加工原理误差
加工原理误差是由于采用了近似的加工运动方式或者近似的刀具轮廓而产生的误差,因在加工原理上存在误差,故称加工原理误差。只要原理误差在允许范围内,这种加工方式仍是可行的。
二、机床的几何误差
机床的制造误差、安装误差以及使用中的磨损,都直接影响工件的加工精度。其中主要是机床主轴回转运动、机床导轨直线运动和机床传动链的误差。
三、刀具的制造误差及弹性变形
弹性形变表现在刀具、机床丝杠副、刀架、加工零件本身等对象的形变,使刀具相对工件出现后退,阻力减小时形变恢复又会出现过切,使工件报废。产生形变的最终原因是这些对象的强度不足和切削力太大。
弹性形变会直接影响零件加工尺寸精度,有时还会影响几何精度(如零件变形时容易产生锥度,因为远离卡盘的位置形变幅度越大),刀具的强度不足,可以设法提高,有时机床和零件本身的强度,是没法选择或改变的,所以只能从减小切削力方面着手,来设**服弹性形变,切深越小、刀具越锋利、工件材料硬度较低、走刀速度减小等都会减小实际切削阻力,都会减轻弹性形变。
所以为了保证工件的尺寸精度,往往把精加工、半精加工和粗加工分开,也就是说把弹性形变大的和弹性形变小的不同工序分开进行(粗加工时追求效率基本不追求精度,刀具需要偏钝,侧重强度,精加工时切削量很小,追求精度,刀具侧重锋利,减小切削阻力),在对刀试切时,就按照不同工序实际加工时的切深进行试切,确保试切时和实际加工时阻力和弹性形变幅度大致相当,确保数控机床坐标系建立准确,确保普通机床进刀准确;然后在精加工时尽可能采用比较锋利的刀具,最大程度减小切削抗力、减小形变。
刀具的制造误差、安装误差以及使用中的磨损,都影响工件的加工精度。刀具在切削过程中,切削刃、刀面与工件、切屑产生强烈摩擦,使刀具磨损。当刀具磨损达到一定值时,工件的表面粗糙度值增大,切屑颜色和形状发生变化,并伴有振动。刀具磨损将直接影响切削生产率、加工质量和成本。
四、夹具误差
夹具误差包括定位误差、夹紧误差、夹具安装误差及对刀误差等,这些误差主要与夹具的制造和装配精度有关。
(1)基准不重合误差
当定位基准与工序基准不重合时而造成的加工误差,称为基准不重合误差,其大小等于定位基准与工序基准之间尺寸的公差。
(2)基准位移误差
工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,导致定位基准与限位基准不能重合,从而使各个工件的位置不一致,给加工尺寸造成误差,这个误差称为基准位移误差。
五、转速对加工的影响
正常情况下转速越高切削的效率越高,所以要在条件允许的情况下,运行尽可能高的转速进行切削。但转速、工件直径确定切削线速度,线速度受工件硬度、强度、塑性、含碳量、含难切削合金量和刀具的硬度及几何性能等因素制约,所以要在线速度限制下选择尽可能高的转速。另外转速高低选择要根据不同材质的刀具确定,例如高速钢加工钢件时,转速较低时粗糙度较好,而硬质合金刀具则转速较高时,粗糙度较好。再者,在加工细长轴或薄壁件时,要注意将转速调整避开零件共振区,防止产生振纹影响表面粗糙度。
六、切削要素对表面粗糙度的影响
知道工件材质较硬时,加工后工件表面粗糙度较好,另外当工件材料的可塑性和延展性越高时(如铜材、铝材),就需要刀具越锋利才能加工出比较好的表面粗糙度,灰铸铁加工相对于钢件加工来说,因为成份复杂,含杂质程度高,就需要刀具硬度较高。有些延展性较高强度又较高的合金材料,就需要锋利却又能保证强度的刀具,所以就比较难加工(如不锈钢、镍基耐热合金、钛合金等)。
除了材料对刀具提出要求以外,切削要素对表面粗糙度也会产生影响,当精加工切深太小,甚至比刀具刃厚还小时,刀刃已不能实现正常切削,所以产生挤压,也就会出现很差的表面粗糙度。当切深太大,甚至使刀具产生弯曲时,这时工件材料是被撕裂下来的,所以在工件上会留下很多丝状铁屑残留和较明显的纹路。走刀速度对工件表面粗糙度的影响也是相当明显的,当走刀速度加快或刀具副偏角不恰当时,会使走刀纹路高度加大,也就使表面粗糙度变差。
『伍』 机床误差有哪些对加工件质量主要影响什么
机床误差有: (1)机床主轴与轴承之间由于制造及磨损造成的误差。它对加工件的圆度、平面度及表面粗糙度产生不良影响。 (2)机床导轨磨损造成误差,它使圆柱体直线度产生误差。 (3)机床传动误差:它破坏正确的运动关系造成螺距差。 (4)机床安装位置误差,如导轨与主轴安装平行误差。它造成加工圆柱体出现锥度误差等。
『陆』 影响加工精度的原因都有哪些
影响加工精度的原因:
1.系统的几何误差:
加工原理误差是由于采用了近似的加工运动方式或者近似的刀具轮廓而产生的误差,因在加工原理上存在误差,故称加工原理误差。机床的制造误差、安装误差以及使用中的磨损,都直接影响工件的加工精度。其中主要是机床主轴回转运动、机床导轨直线运动和机床传动链的误差。
刀具的制造误差、安装误差以及使用中的磨损,都影响工件的加工精度。刀具磨损将直接影响切削生产率、加工质量和成本。夹具误差包括定位误差、夹紧误差、夹具安装误差及对刀误差等。这些误差主要与夹具的制造和装配精度有关。下面将对夹具的定位误差进行详细的分析。
2.工艺系统的受力变形:
由机床、夹具、工件、刀具所组成的工艺系统是一个弹性系统,在加工过程中由于切削力、传动力、惯性力、夹紧力以及重力的作用,会产生弹性变形,从而破坏了刀具与工件之间的准确位置,产生加工误差。
切削过程中受力点位置变化引起的加工误差切削过程中,工艺系统的刚度随切削力着力点位置的变化而变化,引起系统变形的差异,使零件产生加工误差。毛坯加工余量不均,材料硬度变化导致切削力大小变化引起的加工误差——误差复映
3.工艺系统的热变形:
机械加工中,工艺系统在各种热源的作用下产生一定的热变形。由于工艺系统热源分布的不均匀性及各环节结构、材料的不同,使工艺系统各部分的变形产生差异,从而破坏了刀具与工件的准确位置及运动关系,产生加工误差,尤其对于精密加工,热变形引起的加工误差占总误差的一半以上。
在加工过程中,工艺系统的热源主要有内部热源和外部热源两大类。内部热源来自切削过程,主要包括切削热、摩擦热、派生热源。外部热源主要来自于外部环境,主要包括环境温度和热辐射。这些热源产生的热造成工件、刀具和机床的热变形。
4.调整误差:
零件加工的每一个工序中,为了获得被加工表面的形状、尺寸和位置精度,总得对机床、夹具和刀具进行这样或那样的调整。任何调整工作必然会带来一些原始误差,这种原始误差即调整误差。
5.工件残余应力引起的误差:
残余应力是指当外部载荷去掉以后仍存留在工件内部的应力。残余应力是由于金属发生了不均匀的体积变化而产生的。其外界因素来自热加工和冷加工。有残余应力的零件处于一种不稳定状态。一旦其内应力的平衡条件被打破,内应力的分布就会发生变化,从而引起新的变形,影响加工精度。
6.数控机床产生误差的独特性:
在数控机床上所产生的加工误差,与在普通机床上产生的加工误差,其来源有许多共同之处,但也有独特之处,例如伺服进给系统的跟踪误差、检测系统中的采样延滞误差等,这些都是普通机床加工时所没有的。
参考资料网络--加工精度
『柒』 数控机床几何误差都有哪些原因形成的
数控机床几何误差和由温度引起的误差两者共计约占机床总体误差的的一半以上,其中几何误差相对稳定,易于进行误差补偿。普遍认为数控机床的几何误差由以下五个原因原因引起的。
1、热变形误差:由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。
2、机床的控制系统误差:包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。
3、机床的原始制造误差:是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。
4、切削负荷造成工艺系统变形所导致的误差:包括机床、刀具、工件和夹具变形所导致的误差。这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。
5、机床的振动误差:在切削加工时,数控机床由于工艺的柔性和工序的多变,其运行状态有更大的可能性落入不稳定区域,从而激起强烈的颤振。导致加工工件的表面质量恶化和几何形状误差。
数控机床的系统误差是机床本身固有的误差,具有可重复性。数控机床的几何误差是其主要组成部分,也具有可重复性。利用该特性,可对其进行“离线测量”,可采用“离线检测——开环补偿”的技术来加以修正和补偿,使其减小,达到机床精度强化的目的。随机误差具有随机性,必须采用“在线检测——闭环补偿”的方法来消除随机误差对机床加工精度的影响,该方法对测量仪器、测量环境要求严格,所以难于推广应用。所以在误差处理的道路上还必须走更多的路,找到更好更适合的处理方法。
『捌』 CNC 8055 发格数控机床丝杆误差补偿表里误差和误差(-)分别是什么意思
FAGOR CNC8055 丝杠误差补偿功能可以对 双向补偿,误差补偿表中的“误差”指 坐标点正向的误差补偿值,“误差(-)”指坐标点 负向的补偿值。 用激光干涉仪得到的补偿数据可以是双向的,在相同坐标点的正向的补偿值和负向补偿值一般不同,分别填写在“误差”和“误差(-)”中,这样补偿后的精度更高。
希望对你有帮助。
『玖』 数控车床加工误差大概有哪些原因
刀具磨损,刀具安装中心高不对,对刀不准,螺纹刀安装角度不对,加工程序错误,机床传动部分间隙太大,机床刚性不好,机床构造精度不好,都会造成加工误差。
加工误差:加工误差是指零件加工后的实际几何参数(几何尺寸、几何形状和相互位置)与理想几何参数之间偏差的程度。零件加工后实际几何参数与理想几何参数之间的符合程度即为加工精度。加工误差越小,符合程度越高,加工精度就越高。加工精度与加工误差是一个问题的两种提法。所以,加工误差的大小反映了加工精度的高低。
『拾』 机床都有哪些制造误差
机床的制造误差主要包括主轴回转误差、导轨误差和传动链误差。
主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量,它将直接影响被加工工件的精度。主轴回转误差产生的主要原因有主轴的同轴度误差、轴承本身的误差、轴承之间的同轴度误差、主轴绕度等。
导轨是机床上确定各机床部件相对位置关系的基准,也是机床运动的基准。导轨本身的制造误差、导轨的不均匀磨损和安装质量是造成导轨误差的重要因素。
传动链误差是指传动链始末两端传动元件间相对运动的误差。它是由传动链中各组成环节的制造和装配误差,以及使用过程中的磨损所引起的。