1. 什么是超声波的近场区和远场区它们对超声波探伤有什么影响
近场区:生源附近由于声压急剧起伏,出现多个极大值和极小值,最后一个声压极大值处与声源的距离成为近场长度,用N表示,N值以内的区域称为近场区。
当测量距离r=λ/2π≈λ/6时,感应场强度与辐射场强度相当。在距离辐射源比较近(r<λ/6)的地方,感应场强度大于辐射场强度。
远场区:当r大于3λ时,可忽略感应场的成份,认为处于远场(区)。辐射场强度角分布基本上与距天线的距离无关的场区,在辐射远场区,将天线上各点到测量点的连线当作是平行的,所引入的误差小于一定的限度。如天线尺寸为D,则远场区距离应大于2D2/λ。
超声波的束射性的好坏,用发散角的大小来衡量(习惯上用半发射角臼表示)。以平面圆形活塞式声源为例,其大小决定超声波基本原理于声源的宜径(D)和声波的波长(λ)。
(1)超声波远场区可视为什么扩展阅读
研究人员认为,聚焦超声波在它瞄准的脑区部位,改变了处理感觉刺激时兴奋与抑制的平衡,这种改变阻止了刺激兴奋的扩展,使得觉知功能增强。
这一发现带来了一种调节人脑活动的非入侵式新方法,而且空间分辨率超过现有任何方法。基于相关的研究结果,研究人员认为,超声波的经颅磁刺激和经颅直流电刺激的空间分辨率更高。
超声波为精确掌握神经回路活动提供了技术和理论证明,有助于开发神经退行性紊乱病症的潜在疗法,也为探索正常人脑功能,理解认知、决策与思维带来了强有力的新工具。
2. 为什么超声波使用横波斜探头
目前常用的横波探头,是使纵波斜入射到界面上,通过波形转换来实现横波探伤的,当入射角在第一、第二临界角之间时,纵波全反射,第二介质中只有折射横波。
横波声场同纵波声场一样由于波的干涉存在近场区和远场区,当x≥3N时,波束轴线上的声压与波源面积成正比,与至假想波源的距离成反比,类似纵波声场。当横波探头晶片尺寸一定时,K值增大,近场区长度将减小
3. 超声波束的近场区和远场区各有什么特点
1、近场区
生源附近由于声压急剧起伏,出现多个极大值和极小值,最后一个声压极大值处与声源的距离成为近场长度,用N表示,N值以内的区域称为近场区。
当测量距离r=λ/2π≈λ/6时,感应场强度与辐射场强度相当。在距离辐射源比较近(r<λ/6)的地方,感应场强度大于辐射场强度。
2、远场区
一般当r大于3λ时,可忽略感应场的成份,认为处于远场(区)。
辐射场强度角分布基本上与距天线的距离无关的场区,在辐射远场区,将天线上各点到测量点的连线当作是平行的,所引入的误差小于一定的限度。如天线尺寸为D,则远场区距离应大于2D2/λ。
(3)超声波远场区可视为什么扩展阅读:
超声波是弹性机械振动波,它与可听声相比还有一些特点:
传播的方向较强,可聚集成定向狭小的线束;在传播介质质点振动的加速度非常之大;在液体介质中当超声强度达到一定值后便会发生空化现象。
束射特性
从声源发出的声波向某一方向(其他方向甚弱)定向地传播,称之为束射。 超声波由于它的波长较短,当它通过小孔(大于波长的孔)时,会呈现出集中的一束射线向一定方向前进。
又由于超声方向性强,所以可定向采集信息。同样当超声波传播的方向上有一障碍 物的直径大于波长时,便会在障碍物后产生“声影”。这些犹如光线通过小孔和障碍物一样,所以超声波具有和光波相似的束射特性。
超声波的束射性的好坏,一般用发散角的大小来衡量(习惯上用半发射角臼表示)。以平面圆形活塞式声源为例,其大小决定超声波基本原理于声源的宜径(D)和声波的波长(λ)。
参考资料来源:网络-超声波基本原理
参考资料来源:网络-超声波
4. 超声波的特性
1、超声波在传播时,方向性强,能量易于集中;
2、超声波能在各种不同媒质中传播,且可传播足够远的距离;
3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗;
4、 超声波可在气体、液体、固体、固熔体等介质中有效传播;
5、 超声波可传递很强的能量;
6、 超声波会产生反射、干涉、叠加和共振现象。
(4)超声波远场区可视为什么扩展阅读:
超声效应:
当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生一系列力学的、热学的、电磁学的和化学的超声效应,包括以下2种效应:
1、机械效应:超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。
超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化。
2、热效应:由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
参考资料来源:网络-超声波
5. 何为超声波探伤的远场分辨率
分辨率是指区分两个相邻缺陷的能力。超声波探伤都是在远场呀,近场区无法探伤
6. 超声成像的图像特点
1、多次反射:超声垂直照射到平整的界面而形成声波在探头与界面之间来回反射,出现等距离的多条回声,强度渐次减弱,尤其与薄层气体所构成的界面上,如肝左叶与胃内气体之间、膀胱回声前部分的细小回声。
2、多次内部混响:超声在靶内来回反射,形成彗星尾征,如子宫内节育环。
3、切片厚度伪像又称部分容积效应:因声束宽度较宽(即超声切面图的切片厚度较厚)引起。如胆囊内假胆泥样图像。
4、旁瓣伪像:由声束主瓣外的旁瓣反射造成,在结石和肠气等强回声两侧呈现“狗耳”样或称“披纱”样图像。
5、声影:由于前方有强反射或声衰减很大的物质存在,以致在其后方出现声束不能到达的区域即纵条状无回声区称为声影区,利用声影可识别结石、钙化灶和骨骼等。
6、折射声影:超声从低声速介质进入高声速介质,在入射角超过临界角时,产生全反射,以致其后方出现声影,见于球形结构的两侧后方或器官的两侧边缘,又称边缘声影。
7、镜面伪像:超声束投射到表面平滑的人体强回声大界面如横膈面上时,犹如光投射到平面镜上一样,产生相似的实、虚两图像,如横膈两侧出现对称的两个肿块回声。
超声成像的优点:高精度由于超声波的能量能够穿透细微的缝隙和小孔,故可以应用于任何零部件或装配件的清洗。被清洗件为精密部件或装配件时,超声清洗往往成为能满足其特殊技术要求的唯一的清洗方式;
快速超声清洗相对常规清洗方法在工件除尘除垢方面要快得多。装配件无须拆卸即可清洗。超声清洗可节省劳动力的优点往往使其成为最经济的清洗方式;一致无论被清洗件是大是小,简单还是复杂,单件还是批量或在自动流水线上,使用超声清洗都可以获得手工清洗无可比拟的均一的清洁度。
(6)超声波远场区可视为什么扩展阅读:
超声成像的相关介绍:
1、实时线阵超声诊断仪:适用于一般的腹部检查,可有多种不同频率探头。主要缺点是探头与人体接触面较大,检查时需要大的透声窗才能使声束有效地经过检查目标。
2、实时扇型超声诊断仪:心脏探查最常用,探头小,便于肋间扫查,缺点是近场视野小。
3、实时凸阵超声诊断仪:凸阵探头具有比扇型探头近场视野大,又比线阵探头远场视野广的优点。
4、彩色和频谱多普勒超声诊断仪:用于探查心血管、各种器官及病变相关血管,外周血管的血流速度、血流量等血流动力学改变。
7. 超声波远场区的声压分布特点是什么超声检测时如果提高远场区的检测灵敏度
远场是随距离增大,信号呈有规律减小的。提高发射电压,提高换能器的灵敏度,提高接收电路的放大倍数。
8. 请问超声波在近场区噪声多还是远场区多,为什么
近场应该是有一个体积混响,还有一个近场能量太强,很容易引入噪声。
9. 如何理解超声的分辨率
首先超声系统分辨率的定义是指辨别两种物体、两种组织或两个目标的能力,定义为在显示器上刚好能区分开的两点靶间距的实际距离。距离越小,分辨率越强。同时还有一个相似的概念叫分辨力,为靶间距的实际距离的倒数。横向分辨率(又称径向分辨率或方位分辨率)描述了沿着与波束轴线垂直的、波束截面扫描方位上的分辨率。纵向分辨率(又称距离分辨率或者轴向分辨率)是指沿着波束轴线方向的分辨率。不太清楚问题中关于超声声束的高度的定义。关于影响两个分辨率的因素,简述如下:横向分辨率:超声波束的宽度。就是指垂直于声束轴线截面的横向分辨尺寸。由于超声波是扩散的。在近场区,波束宽度大致等于换能器的直径;在远场区,波束扩散,随距离增大而增大。因而横向分辨率随深度增加而下降。纵向分辨率:脉冲宽度。在超声系统中一般都采用脉冲回声技术,发射声波为单位脉冲信号。如果一个回波A和另一个回波B刚好不重叠时,那么A和B在图像上就刚好能区分开来。系统带宽、工作频率、超声衰减对纵向分辨率也有影响。纵向分辨率(axial resolution): 分辨纵向(超声波传播方向)两个最接近目标(物体)的能力,其取决于脉冲长度(pulse length),脉冲长度越短,纵向分辨率越高。纵向分辨率 = 脉冲长度/2 = (脉冲周期数 * 波长) / 2。因此,减少发射脉冲的周期数或者减少超声波波长均可提高纵向分辨率。这也是提高超声探头(换能器)的中心频率(超声波波长减少,超声波波长=声速*周期=声速/频率),就可提高纵向分辨率的原因。