『壹』 工艺工况和设备工况有什么区别
工艺工况主要考察你能使用的有哪些设备。比如你要加工一个孔,理论上可以用钻内床、铣床、车床容、镗床、线切割等等,但实际上你能用的现有设备是什么?比如你只有车床、铣床可用,这就是工艺工况。
设备工况主要指某台具体设备的工作状况,比如这台设备的加工精度等级、夹具配置、刀具配置、以及保养情况等。
『贰』 什么是工艺设备
工艺抄设备是各项劳动过袭程中工艺和设备的合称,是完成一项产品所必备的条件
工艺是劳动者利用生产工具对各种原材料、半成品进行增值加工或处理,最终使之成为制成品的方法与过程。
设备是可供企业在生产中长期使用,并在反复使用中基本保持原有实物形态和功能的劳动资料和物质资料的总称。
『叁』 建筑企业的技术、工艺和设施设备,有那些
每一个企业技术都不一样的,工艺也不一样,建议你可以到鲁文网了解,那是一个给建筑人学习的的网站,施工队,材料设备,施工方案,规范大全等等,不妨去看看
『肆』 与工艺设备成套是什么意思
指将与工艺设备(主体)有关的其它部分统一处置;
如:
储罐成套设计:将储专罐本体以外的相属关部分如安全阀、液位计、放空阀、消防设施……一起在设计中体现出来;
压缩机成套(供应):将压缩机的机电控制、检测仪表、附属机泵等打包供应。
工艺设备成套:将不同用途,不同厂商提供的各种设备统一提供给使用方;
成套商:专门从事将不同用途,不同厂商提供的各种设备买来交付使用的商人;
对方(厂家)成套:由对方或厂家将相关物品一起提供。如买窗帘布时可以到布店买一块布,也可以在买布的同时要求对方同时提供制作、挂钩、轨道以及安装服务。后者就是一种配套行为
『伍』 工艺设备包括哪些内容。
1、工装就是工艺装备!它的专有英语名称是:workmanship & facility
机械加工工艺装备基本术语GB 1008一89
2、工装指的是用来保证某种产品生产的一些设施。注意不要把“工装”和“设备”混淆了!!
一般来说,工装都是某种产品专属的东西。比如说冲压车间内部,模具属于工装(模具只能生产对应的冲压件),油压机属于设备(油压机可以填装不同模具生产);焊装的焊接夹具属于工装(焊接夹具只能特定使用于某种焊接总成),焊钳属于设备(焊钳只要适合,就都能用得上)。
夹具属于工装的一种,不仅仅是焊装用,在机加工方面也有用,许多时候,需要装配几个部件并保证其定位准确的时候就需要。
设计工装夹具要紧扣产品,因为工装夹具是专门为某些产品特定的,要保证生产时无干涉现象、定位准确、操作工操作便捷等。
简单的说,就是用于工件装夹的工具。
工装夹具, JIG, 是用于在机械加工中对工件进行夹持或定位, 以达到一定工艺要求的特制的装备或工具.
工装夹具的设计原则
1.用夹具固定产品及工具
以固定用台钳及夹持具等来固定产品及工具,以解放人手从而进行双手作业
2.使用专用工具
生产线中所用工装应最适合该产品及人工操作的专用工具以提高生产效率
3.合并二种工装为一种
减少工具的更换麻烦,以减少转拉的工时消耗,提高工作效率。生活中我们常见的红、蓝两用毛及带有橡皮的铅笔
4.提高工具设计便利性减少疲劳
⑴工具手柄方便抓握
⑵作业工具与人体动作相协调
⑶工装夹具的操作应以IE的方法进行评估
5.机械操作动作作相对安定并且操作流程化
⑴操作位置应相近集中
⑵让机械尽量减少或脱离人的监控和辅助
⑶开关位置与下工序兼顾
⑷工件自动脱落
⑸能够自检的自动化
⑹安全第一
⑺小型化
⑻容易进行作业准备
设计机械加工中的各种工艺工装:(1)产品零部件的工艺编排、工装设计(2)改造老工艺保证质量、提高效率、降低成本(3)复杂零件的加工方法 设计机械加工中的各种专用设备:(1)专用镗床、铣床、钻床、车床等 (2)专用机械设备 (3)专用机械装置
『陆』 机械设备设计和制作加工具体指的是什么
我是做设备的:
做设备的人必须懂得铸造工艺,机加工艺,板金工艺,热处理工艺,装配工艺,最好自己能动手做,精通CAD,SOLIDWORKES,精通高等数学,材料力学,理论力学,机械设计基础,快速绘制工程图,.熟悉液压,PLC编程,熟悉数控,还要有天马行空的想象力,丰富的见识,更重要的是比常人更有耐心,更懂得等待
机械设备设计和制作加工 就是广,如果你哪天能做设备了那机械行业80%的职位都难不倒你,做设备的人非常牛.
行业都称之为高工.
现在愿意做普工的人越来越少,设备制动化是不可阻挡的趋势,我们国家的自动化设备很少,大有潜力,建议朝自动化控制方向精,祝你早日成为总工程师.
如果上述这些你都做到了回家等工作上门,不用自己跑人才市场了,设备方面精通制造与设计的人才可遇而不可求,因为这是个需要长时间积累的行业,在浮躁的社会里,有几个人守得住寂寞?
『柒』 焊接设备及工艺指什么
焊接
焊接是通过加热、加压,或两者并用,使两工件产生原子间结合的加工工艺和联接方式。焊接应用广泛,既可用于金属,也可用于非金属。
焊接技术的发展历史
焊接技术是随着金属的应用而出现的,古代的焊接方法主要是铸焊、钎焊和锻焊。中国商朝制造的铁刃铜钺,就是铁与铜的铸焊件,其表面铜与铁的熔合线婉蜒曲折,接合良好。春秋战国时期曾侯乙墓中的建鼓铜座上有许多盘龙,是分段钎焊连接而成的。经分析,所用的与现代软钎料成分相近。
战国时期制造的刀剑,刀刃为钢,刀背为熟铁,一般是经过加热锻焊而成的。据明朝宋应星所著《天工开物》一书记载:中国古代将铜和铁一起入炉加热,经锻打制造刀、斧;用黄泥或筛细的陈久壁土撒在接口上,分段煅焊大型船锚。中世纪,在叙利亚大马士革也曾用锻焊制造兵器。
古代焊接技术长期停留在铸焊、锻焊和钎焊的水平上,使用的热源都是炉火,温度低、能量不集中,无法用于大截面、长焊缝工件的焊接,只能用以制作装饰品、简单的工具和武器。
19世纪初,英国的戴维斯发现电弧和氧乙炔焰两种能局部熔化金属的高温热源;1885~1887年,俄国的别纳尔多斯发明碳极电弧焊钳;1900年又出现了铝热焊。
20世纪初,碳极电弧焊和气焊得到应用,同时还出现了薄药皮焊条电弧焊,电弧比较稳定,焊接熔池受到熔渣保护,焊接质量得到提高,使手工电弧焊进入实用阶段,电弧焊从20年代起成为一种重要的焊接方法。
在此期间,美国的诺布尔利用电弧电压控制焊条送给速度,制成自动电弧焊机,从而成为焊接机械化、自动化的开端。1930年美国的罗宾诺夫发明使用焊丝和焊剂的埋弧焊,焊接机械化得到进一步发展。40年代,为适应铝、镁合金和合金钢焊接的需要,钨极和熔化极惰性气体保护焊相继问世。
1951年苏联的巴顿电焊研究所创造电渣焊,成为大厚度工件的高效焊接法。1953年,苏联的柳巴夫斯基等人发明二氧化碳气体保护焊,促进了气体保护电弧焊的应用和发展,如出现了混合气体保护焊、药芯焊丝气渣联合保护焊和自保护电弧焊等。
1957年美国的盖奇发明等离子弧焊;40年代德国和法国发明的电子束焊,也在50年代得到实用和进一步发展;60年代又出现激光焊等离子、电子束和激光焊接方法的出现,标志着高能量密度熔焊的新发展,大大改善了材料的焊接性,使许多难以用其他方法焊接的材料和结构得以焊接。
其他的焊接技术还有1887年,美国的汤普森发明电阻焊,并用于薄板的点焊和缝焊;缝焊是压焊中最早的半机械化焊接方法,随着缝焊过程的进行,工件被两滚轮推送前进;二十世纪世纪20年代开始使用闪光对焊方法焊接棒材和链条。至此电阻焊进入实用阶段。1956年,美国的琼斯发明超声波焊;苏联的丘季科夫发明摩擦焊;1959年,美国斯坦福研究所研究成功爆炸焊;50年代末苏联又制成真空扩散焊设备。
焊接工艺
金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。
焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影响区可能产生过热、脆化、淬硬或软化现象,也使焊件性能下降,恶化焊接性。这就需要调整焊接条件,焊前对焊件接口处预热、焊时保温和焊后热处理可以改善焊件的焊接质量。
另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。
现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。
对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。
厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。
搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。
采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。
角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。
焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。
在近代的金属加工中,焊接比铸造、锻压工艺发展较晚,但发展速度很快。焊接结构的重量约占钢材产量的45%,铝和铝合金焊接结构的比重也不断增加。
未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。
另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的专用焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。
(塑料)焊接 采用加热和加压或其他方法使热塑性塑料制品的两个或多个表面熔合成为一个整体的方法。
『捌』 什么是工艺和工序它们的区别是什么谢谢!
1、定义不同:
工艺是指劳动者利用各类生产工具对各种原材料、半成品进行加工或处理,最终使之成为成品的方法与过程。
一个或一组工人,在一个工作地对一个或同时对几个工件所连续完成的那一部分工艺过程,称为工序。
2、过程不同:
工序是指一个(或一组)工人在一个工作地(如一台机床)对一个(或若干个)劳动对象连续完成的各项生产活动的总和。它是组成生产过程的最小单元。若干个工序组成工艺阶段。
工艺过程的主要内容包括产品方案,原料、燃料、动力的用量与来源,工艺流程,主要设备的选型与配置,对建筑物、构筑物的要求,外部各项协作条件,生产组织与劳动定员,主要技术经济指标等。

3、性质不同:
工序分为基本工序和辅助工序:基本工序,直接使劳动对象发生物理或化学变化的工序。辅助工序,为基本工序的生产活动创造条件的工序。
工艺的性质是:技术上的先进和经济上的合理。由于不同的工厂的设备生产能力、精度以及工人熟练程度等因素都大不相同,所以对于同一种产品而言,不同的工厂制定的工艺可能是不同的;甚至同一个工厂在不同的时期做的工艺也可能不同。
『玖』 “产品的生产工艺”指的是什么
生产工艺是指生产工人利用生产工具和设备,对各种原料、材料、半成品进行内加工或处理,最容后使之成为成品的工作、方法、和技术。
它是人们在劳动中积累起来并经总结的操作技术经验,也是生产工人和有关工程技术人员应遵守的技术规程。
好的生产工艺是生产低成本、高质量产品的前提和保证。

扩展资料:
产品的生产工艺的要求:
生产工艺的推行,必须有良好的生产技术组织措施作保证。
任何一种生产工艺都具有一定的相对稳定性,不能任意改动; 但它又不是一成不变的,而是随着技术进步和生产装备的更新而不断改进的。
生产工艺的确定一般要经过一定的工艺准备工作,如对产品图纸进行工艺分析审查,编制工艺方案和工艺文件,进行工艺术方案的技术经济评价等。
选择生产工艺的主要依据有: 原材料的特点,产品的用途以及质量和精度要求,经济效果情况,现有技术与装备水平等。