⑴ 挂接在现场总线系统中的仪表控制设备个体需具备什么特性
现场总线是顺应智能现场仪表而发展起来的一种开放型的数字通信技术,其发展专的初衷是用数字通属信代替一对一的I/O连接方式,把数字通信网络延伸到工业过程现场。根据IEC和美国仪表协会ISA的定义,现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络,它的关键标志是能支持双向、多节点、总线式的全数字通信。
随着现场总线技术与智能仪表管控一体化(仪表调校、控制组态、诊断、报警、记录)的发展,这种开放型的工厂底层控制网络构造了新一代的网络集成式全分布计算机控制系统,即现场总线控制系统(简称FCS)。FCS作为新一代控制系统,采用了基于开放式、标准化的通信技术,突破了DCS采用专用通信网络的局限;同时还进一步变革了DCS中“集散”系统结构,形成了全分布式系统架构,把控制功能彻底下放到现场。
简而言之,现场总线将把控制系统最基础的现场设备变成网络节点连接起来,实现自下而上的全数字化通信,可以认为是通信总线在现场设备中的延伸,把企业信息沟通的覆盖范围延伸到了工业现场
⑵ 什么是现场控制实现有效的现场控制需要具备哪些条件
现场控制就是在现场来操作控制设备实现所控制的设备启动或停止。实现有效的现场控制要具备现场有发令设备(控制设备)、操作人员在现场。
⑶ 什么样的现场设备可以作为现场控制网络节点
信息网络的作用域是一般意义的信息域,因此信息网络也叫信息域网络。对信息网络在以下 方面不做较为苛刻的要求:既不要求网络具有强实时性和数据信息必须具有不能丢失的高可靠性 和非常高的安全性,也不要求网络常年工作在恶劣的现场环境条件中。
(1)网络传输的数据信息量大小不同
控制网络传输的信息多为短帧信息,数据信息量小,且信息交换频繁;而信息网络传输及处 理的数据信息量一般较大,传输和处理多媒体文件、视音频文件是信息网络的工作常态,信息网 络中信息交换也远比不上控制网络频繁。
(2)数据信息流向有各自不同的规律
控制网络域中各种节点设备和现场传感器、变送器之间的数据信息流向是确定的,即从传感器流向节点设备;而嵌入了微处理器的节点设备与现场的执行器之间的数据信息流向—般是从节点设备流向执行器,网络节点设备与网络之间的数据信息流向是 双向的。
(3)周期性信息与非周期性信息的所占比例差别大
在控制网络处理的信息中,周期性与韭周期性信息同时存在,正常状况下,周期性信息 (如周期性监控信息、过程监控信息)较多,而非周期性信息(如突发性事件信息、对环境变化 的反应性信息等)较少;而信息网络非周期性信息所占比例很大。
(4)对事件的响应时间差距较大
过程控制网络的响应时间要求为0.01-0.5s,制造自动化网络的响应时间要求为0.5-1.0S; 信息网络的响应时间要求为2.2-6.0s,对接收数据信息后的响应时间要求较为宽松,因此信息 网络对许多响应的实时性可以忽略。
⑷ 现场总线控制系统的现场总线和现场总线控制系统的定义
现场总线是顺应智能现场仪表而发展起来的一种开放型的数字通信技术,其发展的初回衷是用数答字通信代替一对一的I/O连接方式,把数字通信网络延伸到工业过程现场。根据IEC和美国仪表协会ISA的定义,现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络,它的关键标志是能支持双向、多节点、总线式的全数字通信。
随着现场总线技术与智能仪表管控一体化(仪表调校、控制组态、诊断、报警、记录)的发展,这种开放型的工厂底层控制网络构造了新一代的网络集成式全分布计算机控制系统,即现场总线控制系统(简称FCS)。FCS作为新一代控制系统,采用了基于开放式、标准化的通信技术,突破了DCS采用专用通信网络的局限;同时还进一步变革了DCS中“集散”系统结构,形成了全分布式系统架构,把控制功能彻底下放到现场。
简而言之,现场总线将把控制系统最基础的现场设备变成网络节点连接起来,实现自下而上的全数字化通信,可以认为是通信总线在现场设备中的延伸,把企业信息沟通的覆盖范围延伸到了工业现场。

⑸ 现场总线通信协议的要求是什么江湖救急!急!急!急!
计算机与通信技术结合产生了计算机网络后,企业管理部门间通信都以网络为中介,实现了信息与资源共享。同时,信息技术的发展也引起了自动化结构的变革,逐步形成以网络集成自动化系统为基础的企业信息系统。Fieldbus(现场总线)就是顺应这一形势发展起来的新技术,它是计算机网络与控制系统结合的必然产物,它的出现标志着工业控制领域又一个新时代的开始。
现场总线是对DCS(集散控制系统)的拓展,突破了DCS相对封闭的限制,它将测控任务分散到现场设备中,上位计算机只负责监控以及一些复杂的优化和先进控制的功能。现场总线是工厂底层信息及数据传递的主体,在整个工厂的控制网络中,现场总线处于重要的基础地位。自80年代末以来,国外相继出现了一些有影响的现场总线标准,如:基金会现场总线(FF,Foundation Fieldbas)、lonWork总线、 Profibus、CAN控制局域网等,它们大都是在各公司标准的基础上逐渐形成的,在今后一段时期内,会出现几种现场总线标准共存的局面。现在一个统一的现场总线通信协议的国际标准已经形成,真正的开放互连系统,是大势所趋。
1 现场总线控制系统的特点
现场总线系统(FCS)与传统的集散控制系统 (DCS)相比,有以下特点:
1.1 总线式结构
一对传输线(总线)挂接多台现场设备,双向传输多个数字信号。这种结构比一对一的单向模拟信号传送结构布线简单,安装费用低,维护简便。
1.2 开放互操作性
现场总线采用统一的协议标准,是开放式的互联网络,对用户是透明的,在传统的DCS中,不同厂家的设备是不能相互访问的。而FCS采用统一的标准,不同厂家的网络产品可以方便地接入同一网络,集成在同一控制系统中进行互操作,因此简化了系统集成。
1.3 彻底的分散控制
现场总线将控制功能下放到作为网络节点的现场智能仪表和设备中,做到彻底的分散控制,提高了系统的灵活性、自治性和安全可靠性,减轻了控制站 CPU的计算负担。
1.4 信息综合、组态灵活
通过数字化传输现场数据,FCS能获取现场仪表的各种状态、诊断信息,实现实时的系统监控和管
理。此外,FCS引入了功能块的概念,通过统一的组态方法,使系统组态简单灵活,不同现场设备中的功能块可以构成完整的控制回路。
1.5 多种传输媒介和拓扑结构
FCS由于采用数字通讯方式,因此可用多种传输介质进行通信。根据控制系统中节点的空间分布情况,可应用多种网络拓扑结构。这种传输介质和网络拓扑结构的多样性给自动化系统的施工带来了极大的方便,据统计,FCS与传统DCS的主从结构相比,只计算布线工程一项即可节省40%的经费。
2 现场总线网络模型
现场总线本质上是一种控制网络,因此网络技术是现场总线的重要基础。和Internet、Intranet等类型的信息网络不同,控制网络直接面向生产过程,因此要求很高的实时性、可靠性、数据完整性和可用性。为满足这些特性,现场总线对标准的网络协议作了简化,一般只包括ISO/OSl7层模型中的3层:物理层、数据链路层和应用层。此外,现场总线还要完成与上层工厂信息系统的数据交换和传递。综合自动化是现代工业自动化的发展方向,在完整的企业网构架中,现场总线控制网络模型应涉及从底层现场设备网络到上层信息网络的数据传输过程。
基于上述考虑,统一的现场总线控制网络模型应具有三层结构,从底向上依次为:现场智能设备层、现场总线监控层、远程监控层。
2.1 现场智能设备层
依照现场总线的协议标准,智能设备采用功能块的结构,通过组态设计,完成数据采集、A/D转换、数字滤波、温度压力补偿、PID控制等各种功能。智能转换器对传统检测仪表电流电压进行数字转换和补偿。此外,总线上应有PLC接口,便于连接原有的系统。
现场设备是以网络节点6g形式挂接在现场总线网络上,为保证节点之间实时、可靠的数据传输,现场总线控制网络必须采用合理的拓扑结构。常见的现场总线网络拓扑结构有:
2.1.1 环形网
其特点是时延确定性好,重载时网络效率高,但轻载时等待令牌产生不必要的时延,传输效率下降。 2.1.2 总线网
其特点是节点接人方便,成本低。轻载时延时小,但网络通信负荷较重时延时加大,网络效率下降。此外传输延时不定。
2.1.3 树型网
其特点是可扩展性好,频带较宽,但节点间通信不便。
2.1.4令牌总线网
结合环形网和总线网的优点,即物理上是总线网,逻辑上是令牌网。这样,网络传输延时确定无冲突,同时节点接人方便,可靠性好。
2.2 现场总线监控层
这一层从现场设备中获取数据,完成各种控制、运行参数的监测、报警和趋势分析等功能,另外还包括控制组态的设计和下装。监控层的功能一般由上位计算机完成,它通过扩展槽中网络接口板与现场总线相连,协调网络节点之间的数据通信;或者通过专门的现场总线接口(转换器)实现现场总线网段与以太网段的连接,这种方式使系统配置更加灵活。这一层处于以太网中,因此其关键技术是以太网与底层现场设备网络间的接口,主要负责现场总线协议与以太网协议的转换,保证数据包的正确解释和传输。监控层除上述功能外,还为实现先进控制和远程操作优化提供支撑环境。
2.3 远程监控层
其主要目的是在分布式网络环境下构建一个安全的远程监控系统。首先要将中间监控层的数据库中的信息转入上层的关系数据库中,这样远程用户就能随时通过浏览器查询网络运行状态以及现场设备的工况,对生产过程进行实时的远程监控。赋予一定的权限后,还可以在线修改各种设备参数和运行参数,从而在广域网范围内实现底层测控信息的实时传递。目前,远程监控实现的途径就是通过Internet,主要方式是租用企业专线或者利用公众数据网。由于涉及实际的生产过程,必须保证网络安全,可以采用的技术包括防火墙、用户身份认证以及密钥管理等。在这方面,WorldFIP现场总线技术具有优势。WorldFIP的报文比较灵活,兼容TCP/IP,可以无缝连接Internet,同时又不影响实时数据的传送,因此,整个控制网络可以采用统一的协议标准。此外,WorldFIP的现场设备中有内嵌的Web服务器,用户可以直接通过Internet访问现场设备中的信息,无需中间的协议转换器。
在整个现场总线控制网络模型中,现场设备层是整个网络模型的核心,只有确保总线设备之间可靠、准确、完整的数据传输,上层网络才能获取信息以及实现监控功能。当前对现场总线的讨论多停留在底层的现场智能设备网段,但从完整的现场总线控制网络模型出发,应更多地考虑现场设备层与中间监控层、Internet应用层之间的数据传输与交互问题,以及实现控制网络与信息网络的紧密集成。
3 网络集成
3.1 现场总线控制网络与DCS网络的集成
现场总线并不是在所有的控制场合下都能发挥它的优点,例如简单的小规模数字模拟混合系统,特别是现场和控制室距离近的情况。因此混合控制在统一集中的CPU中进行将比较方便,小系统所冒控制集中的风险也不大。而现场总线的控制分散的特点需要几种设备来实现,则显得繁琐。在当前和今后的一段时间内,工业控制网络将面临现场总线与 DCS网络共存的局面,因此,在工业控制网络结构设计时,考虑如何实现控制网络中异构网段情况下的网络集成的问题也是很现实的。
我们知道,DCS属非开放式专用网络,DCS主机是DCS系统的控制、通信中心。而在新型的工业控制网络体系中,整个DCS系统将作为其中的一个特殊子网存在,DCS主机则是一个普通的节点。在现场总线网络集成时有两种不同的方案:
(1)采用网关将DCS专用网络挂接在高速网络上;
(2)使用特殊网关或通信控制器,将现场总线系统挂接在DCS网络上;
3.2 控制网络和信息网络的集成
控制网络的通信技术不同于以传输信息和资源共享为目的的信息网络,其最终目标是实现对被控对象中能量和物质转移的有效控制,使系统安全稳定地进行。因此要求具有协议简单、安全可靠、纠错性好、成本低等特点。其网络负载稳定,多为短帧传送,信息交换频繁。实现控制网络与信息网络的紧密集成是建立企业综合实时信息库的基础,为企业的优化控制、调度决策提供依据;通过控制网络与信息网络的结构,可以建立统一的分布数据库,保证所有数据的完整性和互操作性;现场设备与信息网络实时通信,使用户通过信息网络中标准的图形界面随时随地的了解生产情况;控制网络和信息网络的紧密集成也便于实现远程监控、诊断和维护。
控制网络与信息网络的集成可以通过以下几种方式:
3. 2.1 在控制网络和信息网络之间加入转换接口
这种方式通过硬件来实现,即在底层网段与中间监控层之间加入中继器、网桥、路由器等专门的硬件设备,使控制网络作为信息网络的扩展与之紧密集成。硬件设备可以是一台专门的计算机,依靠其中运行的软件完成数据包的识别、解释和转换;对于多网段的应用,它还可以在不同网段之间存储转发数据包,起到网桥的作用。此外,硬件设备还可以是一块智能接口网板,Fisher - Rosemount的Deltav系统就通过一块机柜中的H1接口卡,完成现场总线智能设备与以太网中监控计算机之间的数据通信。
转换接口的集成方式功能较强,但实时性较差。信息网络一般是采用TCP/IP的以太网,而TCP/IP没有考虑数据传输的实时性,当现场设备有大量信息上传或远程监控操作频繁时,转换接口都将成为实时通信的瓶颈。
3.2.2 在控制网络和信息网络之间采用DDE技术
当控制网络和信息网络之间具有中间系统或共享存储器工作站时,可以采用DDE方式实现二者的集成,其实质是各应用程序通过共享内存来交换信息,中间系统中的信息处理机是控制网络的工作站,另外也是信息网络中的工作站。其中运行两个程序,一是接收、校验实时信息的通信程序,为信息网络数据库提供实时数据信息;另一个是数据访问应用程序接口,它接收DDE服务器实时数据并写人数据库服务器中,供信息网络实现信息处理、统计分析等功能。
DDE方式具有较强的实时性,而且比较容易实现,可以采用标准的Windows技术。但是涉及到复杂的协议转换时,DDE方式的软件费用比较大。因此这种方式适合配置简单的小系统。
3.2.3 控制网络和信息网络采用统一的协议标准
这种方式将成为控制网络和信息网络完成集成的最终解决方案。由于控制网络和信息网络采用了面向不同应用的协议标准,因此两者集成时总需要某种数据格式的转换机制,这将使系统复杂化,也不能确保数据的完整性。如果信息网络的协议标准是提高其实时性,而控制网络的协议标准是提高其传输速度,两者的兼容性就会提高,两者合二为一,这样从底层设备到远程监控系统,都可以使用统一的协议标准,不仅确保了信息准确、快速、完整的传输,还可以极大地简化系统设计。上面提到的WorldFIP协议就可以兼容TCP/IP,因此可以方便地实现以太网和Internet的集成,使控制网络和信息网络紧密地结合在一起,最终实现统一的网络结构。当前多种总线标准并存,信息网络协议也不尽相同,所以要实现控制网络与信息采用统一的协议标准,还有很多问题要解决。
4 结束语
网络是企业综合自动化的基础,在整个企业的网络体系结构中,现场总线处于基础地位,因此构建完整的现场总线控制网络模型具有重要的意义。这种模型延伸到控制领域的最高层,即管理决策层,因此要求控制网络和信息网络紧密结合,保证从底层现场设备到顶层生产管理之间,正确的数据传输和数据转发。从长远来看,控制网络和信息网络终将归为一体,其间现场总线将起到沟通生产过程数据流和信息网络数据流的桥梁作用。
⑹ 控制中心哪些情况下可启动现场设备
总抄线制手动控制盘与多线制袭手动控制盘主要区别在于:
1、采用单独布线,还是和其他现场设备一样的信号总线;
2、另一个就是专线盘不受主机状态的影响。
总线制手动控制盘是将信号总线上所带的控制设备模块地址定义到总线盘上的任意一个地址,通过总线盘对现场设备进行控制,如卷帘门、声光警报器等。
多线制手动控制盘主要是对重要的消防设备比如风机、水泵等进行专线控制,每台设备都是单独布线到现场,保证控制器任何状态下(正常或者故障),均可以在控制中心启动现场设备。
⑺ 什么是现场控制实现有效的现场控制需要具备哪些条件
现场控制活动的标准来自于计划工作所确定的活动目标、政策、规范和制度;现回场控制的重答点是正在进行的计划实施过程;现场控制的有效性主要取决于主管人员的个人素质,因此,主管人员的言传身教将发挥很大作用。
进行现场控制时,要避免单凭主观意志进行工作,主管人员必须加强自身的学习和提高,亲临第一线进行认真仔细的观察和监督,以计划或标准为依据,服从组织原则,遵从正式指挥系统的统一指挥,逐级实施控制。
⑻ 什么是现场总线为什么要采用现场总线技术现场总线有哪些优点
1.现场总线的概念
现场总线是应用在生产现场、在微机化测量控制设备之间实现双向串行多节点数字通信的系统,也被称为开放式、数字化、多点通信的层控制网络。
现场总线技术将专用微处理器置入传统的测量控制仪表,使它们各自具有了数字计算和数字通讯能力,采用可进行简单连接的双绞线等为总线,把多个测量控制仪表连接成网络系统,并按公开、规范的通信协议,在位于现场的多个微机化测量控制设备之间及现场仪表与远程监控计算机之间,实现数据传输与信息交换,形成各种适应实际需要的自动控制系统。
现场总线是20世纪80年代中期在国际上发展起来的。随着微处理器与计算机功能的不断增强和价格的降低,计算机与计算机网络系统得到迅速发展。现场总线可实现整个企业的信息集成,实施综合自动化,形成工厂底层网络,完成现场自动化设备之间的多点数字通信,实现底层现场设备之间以及生产现场与外界的信息交换。
2.现场总线的特点及优点
(1) 全数字化通信
(2) 开放型的互联网络
(3) 互可操作性与互用性
(4) 现场设备的智能化
(5) 系统结构的高度分散性
(6) 对现场环境的适应性
3.现场总线的特点
现场控制设备具有通信功能,便于构成工厂底层控制网络。
通信标准的公开、一致,使系统具备开放性,设备间具有互可操作性。
功能块与结构的规范化使相同功能的设备间具有互换性。
控制功能下放到现场,使控制系统结构具备高度的分散性。
4.现场总线的优点
现场总线使自控设备与系统步入了信息网络的行列,为其应用开拓了更为广阔的领域;
一对双绞线上可挂接多个控制设备, 便于节省安装费用;
节省维护开销;
提高了系统的可靠性;
为用户提供了更为灵活的系统集成主动权。
5.为什么要用现场总线?我们通过对现场总线在不同情况下不同机构和不同的人公认的对现场总线的本质体现中了解;
1)中现场通信网络
用于过程自动化和制造自动化的现场设备或现场仪表互连的现场通信网络。
现场设备互联
依据实际需要使用不同的传输介质把不同的现场设备或者现场仪表相互关联。
互操作性
用户可以根据自身的需求选择不同厂家或不同型号的产品构成所需的控制回路,从而可以自由地集成FCS。
2)分散功能块
FCS 废弃了DCS 的输入/输出单元和控制站, 把DCS 控制站的功能块分散地分配给现场仪表, 从而构成虚拟控制站,彻底地实现了分散控制。
3)通信线供电
通信线供电方式允许现场仪表直接从通信线上摄取能量, 这种方式提供用于本质安全环境的低功耗现场仪表, 与其配套的还有安全栅。
4)开放式互联网络
现场总线为开放式互联网络,既可以与同层网络互联,也可与不同层网络互联,还可以实现网络数据库的共享。
从以上内容我们可以看到,现场总线体现了分布、开放、互联、高可靠性的特点,而这些正是DCS系统的缺点。DCS通常是一对一单独传送信号,其所采用的模拟信号精度低,易受干扰,位于操作室的操作员对模拟仪表往往难以调整参数和预测故障,处于“失控”状态,很多的仪表厂商自定标准,互换性差,仪表的功能也较单一,难以满足现代的要求,而且几乎所有的控制功能都位于控制站中。FCS则采取一对多双向传输信号,采用的数字信号精度高、可靠性强,设备也始终处于操作员的远程监控和可控状态,用户可以自由按需选择不同品牌种类的设备互联,智能仪表具有通信、控制和运算等丰富的功能,而且控制功能分散到各个智能仪表中去。由此我们可以看到FCS相对于DCS的巨大进步。
也正是由于FCS的以上特点使得其在设计、安装、投运到正常生产都具有很大的优越性:首先由于分散在前端的智能设备能执行较为复杂的任务,不再需要单独的控制器、计算单元等,节省了硬件投资和使用面积;FCS的接线较为简单,而且一条传输线可以挂接多了设备,大大节约了安装费用;由于现场控制设备往往具有自诊断功能,并能将故障信息发送至控制室,减轻了维护工作;同时,由于用户拥有高度的系统集成自主权,可以通过比较灵活选择合适的厂家产品;整体系统的可靠性和准确性也大为提高。这一切都帮助用户实现了减低安装、使用、维护的成本,最终达到增加利润的目的。