导航:首页 > 器材知识 > 航空构件有哪些需要哪些切削技术和设备

航空构件有哪些需要哪些切削技术和设备

发布时间:2021-02-17 02:43:19

A. 制造飞机需要哪些材料和技术

飞机是一种非常复杂的抄设备,制造飞机需要的技术和知识实在太多了。
起码应该有空气动力学、飞行原理、飞行力学、飞机结构、材料学、机械制图、结构力学、发动机原理与结构、航空仪表、电器、无线电、导航、可靠性设计、可维修性设计……等方面的知识;
起码需要有机械设计、机械加工(车钳铆焊)、飞机结构设计、飞行控制、飞机机载设备的选型、飞机设备的装配、飞机地面试验和飞行试验……等技术。
现代飞机可以说包括了现代几乎大多数的先进技术,是现代先进技术的集中体现。

B. 天津都有那些航空航天企业啊航空航天领域的企业生产,都涉及那些工业设备和原料呢

先进复合材料具有轻质、高强度、高模量、抗疲劳、耐腐蚀、可设计、成型工艺性好和成本低等特点,是理想的航空结构材料,在航空产品上得到了广泛应用,已成为新一代飞机机体的主体结构材料。复合材料先进技术的成熟使其性能最优和低成本成为可能,从而大大推动了复合材料在飞机上的应用。一些大的飞机制造商在飞机设计制造中,正逐步减少传统金属加工的比例,优先发展复合材料制造。本文旨在介绍在复合材料制造过程中所涉及到的主要工艺和先进专用设备。
复合材料在飞机上的应用
        随着复合材料制造技术的发展,复合材料在飞机上的用量和应用部位已经成为衡量飞机结构先进性的重要标志之一。复合材料在飞机上的应用趋势有如下几点:
(1)复合材料在飞机上的用量日益增多。
       复合材料的用量通常用其所占飞机机体结构重量的百分比来表示,世界上各大航空制造公司在复合材料用量方面都呈现增长的趋势。最有代表性的是空客公司的A380客机和后续的A350飞机以及波音公司的B787飞机。A380上复合材料用量约30t。B787复合材料用量达到50%。而A350飞机复合材料用量更是达到了创纪录的52%。复合材料在军机和直升机上的用量也有同样的增长趋势,近几年得到迅速发展的无人机更是将复合材料用量推向更高水平。
(2)应用部位由次承力结构向主承力结构发展。
        最初采用复合材料制造的是飞机的舱门、整流罩、安定面等次承力结构。目前,复合材料已经广泛应用于机身、机翼等主承力结构。主承载部位大量应用复合材料使飞机的性能得到大幅度提升,由此带来的经济效益非常显著,也推动了复合材料的发展。
(3)在复杂外形结构上的应用愈来愈广泛。
       飞机上用复合材料制造的复杂曲面制件也越来越多,如A380和B787飞机上的机身段,球面后压力隔框等,均采用纤维铺放技术和树脂膜渗透(RFI)工艺制造。
(4)复合材料构件的复杂性大幅度增加,大型整体、共固化成型成为主流。
        在飞机上大量采用复合材料的最直接的效果是减重,复合材料制件采用共固化、整体成型技术,能够成型大型整体部件,明显减少零件、紧固件和模具的数量,减少零件装配,从而有效地降低制造成本。
(5)复合材料的制造手段和先进专用设备得到迅速发展和广泛应用。
        传统的复合材料制造技术自动化程度低,复合材料制件的质量不稳定,分散性大,可靠性差,生产成本居高不下,无法生产大型和复杂的复合材料制件。飞机结构尺寸的不断增加使大尺寸复合材料制件的制造工艺变得极为重要。

        近年来,出现了各种各样的自动化程度较高的制造技术,如纤维铺放、树脂膜转移成型/渗透成型、电子束固化等技术。随之研制并得以工业化应用的先进、高效、低成本专用设备也层出不穷,如三维编织机、全自动铺带设备和丝束铺放设备等。这些高效自动化设备显著提高了复合材料生产效率和制件内部质量,降低了成本,使复合材料性能最优化和低成本并存成为可能。
复合材料制造工艺及主要设备
        复合材料成型是一个比较复杂的过程。随着各种新工艺、新技术的涌现,复合材料制造工艺已成为复合材料加工制造的关键,涵盖的技术面广、技术含量高,涉及的成本份额占总成本的80%以上。
      根据用途、批量、市场等要求的不同,航空航天用复合材料产品的成型工艺采用了手工铺层、半自动成型、全自动成型以及液体成型等技术。下面就生产中主要涉及的工艺方法和主要设备加以重点说明。

(1)手工铺层。
      目前,手工铺层仍是被广泛使用的传统成型方法,甚至像B-2轰炸机以及一些通用飞机的制造也采用了大量的手工铺层工序。因为这些产品的定货量往往是一位数,而质量要求很高。手工铺贴方法的优点是可使蒙皮厚度有大的变化,进行局部加强,嵌入接头用的金属加强片,形成加强筋和蜂窝夹芯区等。
目前,手工铺层使用了许多专用设备来控制和保证铺层的质量,如复合材料预浸料自动剪裁下料系统和铺层激光定位系统等,即采用专门的数控切割设备来进行预浸料和辅助材料的平面切割,从而将依赖于样板的制造过程转变为可根据复合材料设计软件产生的数据文件进行全面运作的制造过程。
       手工铺层的缺点是要求铺层人员有很高的技艺和施工经验,手工铺贴费工费时,因此效率低、成本高(占总成本的1/4),难以适应大批量生产和大型复杂复合材料制件的生产要求。因此,在60年代初,在手工铺层复合材料实施几年之后,就开发了自动铺带(ATL)技术。
[viewimg]
即使在美国,人工铺带也仍然采用,这是美国 Liberty Aerospace的工人正在操作

(2)自动铺带(ATL)。
      自动铺带技术采用有隔离衬纸的单向预浸带,其裁剪、定位、铺叠、辊压均采用数控技术自动完成,由自动铺带机实现。多轴龙门式机械臂完成铺带位置的自动控制,铺带头上装有预浸带输送和切割系统,根据待铺放工件边界轮廓自动完成预浸带的铺放和特定形状位置的切割。预浸带在加热状态时,在压辊的压力作用下铺叠到模具表面。
      自动铺带机根据铺放制件的几何特征可分为平面铺带和曲面铺带两类。随着自动铺带设备、编程、计算机软件、铺带技术以及材料的进一步发展,自动铺带的效率变得更高,性能更可靠,操作性更友好。与手工相比,先进铺带技术可降低制造成本的30%~50%,可成型超大尺寸和形状复杂的复合材料制件,而且质量稳定,缩短了铺层及装配时间,工件近净成型,切削加工及原材料耗费减少。目前,最先进的第五代铺带机是带有双超声切割刀和缝隙光学探测器的十轴铺带机,铺带宽度最大可达到300mm,生产效率可达到手工铺叠的数十倍。
      自动铺带机要成型复杂双曲率型面,需采用窄带,工作效率会降低,而一台铺带机的价格需要3~5百万美元,成本太高。由此,Hercules率先开发了自动丝束铺放(ATP)设备。
(3)自动丝束铺放(ATP)。
      自动丝束铺放技术结合了自动铺带和纤维缠绕技术的优点,铺束头把缠绕技术所用的不同预浸纱束独立输送和铺带技术所用的压实、切割、重送功能结合在一起,由铺束头将数根预浸纱束在压辊下集束成为一条宽度可变的预浸带,然后铺放在芯模表面,铺放过程中加热软化预浸纱束并压实定型。
       与自动铺带相比,自动铺丝束技术可以成型更复杂的结构件,材料消耗率低,是自动化制造技术的顶峰,ATP设备对复合材料的重要性相当于铣床对金属材料结构的重要性。它是介于自动缠绕与自动铺带之间的一种铺层方法,特别适于复杂构件的制造。自动铺放技术的基础是铺放机的设计与开发。
       以美国辛辛那提机床公司Viper纤维铺放机系统为例。Viper纤维铺放系统将缠绕、特型铺带及计算机控制结合起来,自动生产需要大量手工铺层的复杂零件,从而缩短铺层及装配时间,由于工件近净成型,切削加工及原材料耗费减少。
沃特公司制造波音787的23%的机身,其中包括5.8m×7m的47段及4.3m×4.6m的48段,采用了来自辛辛那提公司的自动铺放机Viper6000。制造时,将东丽的3900系碳/环氧无纬带铺叠在大的筒形旋转模具上,模具由互锁的芯轴组成,筒形件铺成后放在23.2m×9.1m的、世界上体积最大的热压罐中固化。目前,自动丝束铺放机已可铺放窄带及宽带丝束。
预浸丝束/带的机器人自动铺放已成为高性能纤维增强复合材料结构的一种强力高效技术。它是机电装备技术、CAD/CAM软件技术和材料工艺技术的综合集成,包括:自动铺放装备技术、预浸丝束/带切割技术、铺放CAD技术、铺放CAM技术、预浸丝束/带技术、自动铺放工艺技术、铺放质量控制、模具技术、成本分析及控制和一体化协同数字化设计技术等,具有高效率、高质量、高重复性和低成本等优点。
[viewimg]
Viper6000大型ATP机,代表了当今自动丝束铺放最高水平

(4)热压罐固化成型。
       热压罐固化成型是航空航天复合材料结构件传统的制造工艺,它有产品重复性好、纤维体积含量高、孔隙率低或无孔隙、力学性能可靠等优点。热压罐固化的缺点主要是耗能高以及运行成本高等。而目前大型复合材料构件必需在大型或超大型热压罐内固化,以保证制件的内部质量,因此热压罐的三维尺寸也在不断加大,以适应大尺寸复合材料制件的加工要求。目前,热压罐都采用先进的加热控温系统和计算机控制系统,能够有效地保证在罐内工作区域的温度分布均匀,保证复合材料制件的内部质量和批次稳定性,如准确的树脂含量、低或无空隙率和无内部其他缺陷。这也是热压罐一直沿用至今的主要原因。

(5)复合材料液体成型。
       复合材料液体成型已是十分普及的工艺,它是以树脂转移成型(RTM)为主体,包括各种派生的RTM技术,大约有25~30种之多,其中,RTM、真空辅助RTM(VARTM)、真空辅助树脂注射成型(VARI)、树脂膜熔浸成型(RFI)和树脂浸渍成形(SCRIMP)被称为RTM的5大主要成型工艺,也是目前应用最多的RTM工艺。
       RTM的优点是成品的损伤容限高,可成型精度高、孔隙率小的复杂构件及大型整体件。RTM成型的关键是,要有适当的增强预形件以及适当黏度的树脂或树脂膜。RTM要求树脂在注射温度下的黏度值低,第一代环氧树脂的粘度要求在500cps(0.5Pa·s)以下,以前对于较大尺寸的构件要求树脂黏度低于250cps(0.25Pa·s),RTM工艺的主要设备是各种树脂注射机和整体密闭型模具。
       随着新型增强材料结构的不断创新,编织技术和预成形体技术与RTM技术相结合,形成了新的工艺发展和应用方向。如采用三维编织技术将增强材料预制成3D结构,然后再与RTM工艺复合,也可将纤维织物通过缝纫或粘结的方法,直接预制成制件形状,再采用RTM工艺成型复合材料。
       例如,EADS军用飞机公司为B787后机身段制造的后压力隔框,它是一个半球形的整体隔框,插在增压的机身47段及非增压的48段及尾段之间,它是用VARTM制造的,尺寸大约为4.3m×4.6m,波音787是首架具有复合材料后压力隔框的飞机。该隔框的制造得益于Cytec公司的树脂熔渗膜系统。韧化的复合材料有顶级阻燃/烟/毒性能,可以取消防火层,从而比传统的树脂熔渗法制得的结构轻。而波音787机身的大部分隔框则采用了碳纤维树脂膜熔渗RFI技术制造,复合材料隔框用碳纤维复合材料抗剪箍连接在机身蒙皮上,由于设计及成本上的原因,少数部位仍采用钛合金及铝合金隔框。

(6)隔膜成型。
       隔膜成型原是一种为热塑性复合材料开发的成型工艺,后发现用于热固性复合材料具有很广泛的用途。它具有成型过程中纤维不易滑动、不易产生皱褶的特殊功效,非常适用于加工大型飞机机翼前梁的C形截面。在近年推出的A400M等大型飞机前梁C形截面中,已广泛采用了这种工艺方法。
       为成型出C形截面,预形件从铺带机上卸下送到由英国Aeroform公司提供的热包膜成型机设备上成型。为便于抽真空,预形件应夹在两个由俄亥俄州的杜邦电子技术公司提供的Kapton聚酰亚胺薄膜之间。薄膜之间抽真空,然后从零件上面进行红外加热,直到1h内将温度升到60℃。这样可以保证即使在梁根部的最厚截面中心,也可均匀加热到同一温度。然后缓缓对两薄膜间层合板加压,而在轻质模具上形成梁的内表面。这个C形截面可在30min内缓慢成型之后,去掉Kapton薄膜。
在欧洲推出的ALCAS计划中,这种成型方法已成为加工飞机前梁的一种典型工艺方法。
(7)复合材料制件加工、装配及无损检测。
       复合材料制件成型后,需要进行机械加工,包括外形尺寸加工、钻孔等,要求具有很高的加工质量。复合材料制件属于脆性各向异性材料,常规的加工方法不能满足复合材料加工质量要求。传统切割方式在加工纤维材料时具有以下缺点:切割速度慢、效率低;复合材料制件属于易变形材料,切割精度难以保证;在切割高韧性材料时,刀具和钻头等磨损快、损耗大;加工复合材料层合板时易发生分层破坏等。因此要求复合材料生产需配备大型自动化高压水切割机、超声切割设备和数控自动化钻孔系统等专用设备,以满足复合材料制件经加工后无分层磨损且符合装配尺寸精度的要求。
       大型机翼蒙皮层合板一般采用大型高压水切割机进行净形切割,世界上最大切割机的床身为36m×6.5m,由Flow International公司制造。这种磨粒喷水切割机可以快速切割厚的层合板而不致产生层合板过热,25mm厚的层合板可以0.67m/min速度切割,对6mm薄的层合板,切割速度可以高达3m/min,厚的蒙皮可以0.39m/min速度切割。
[viewimg]

       超声切割设备将超声振动能量加载在切割刀具上,可有效地分离纤维材料的边界,从而有效解决上述传统切割方法带来的问题。超声切割技术的切割质量优良,具有无毛刺、无刀具磨损、无碳化材料、切割力小、不易造成分层,切割速度快、精度高等特点。已经在国外航空企业内得到广泛的应用。
       随着飞机的金属结构逐渐向复合材料结构转移,复合材料制造的自动化显得日益重要。而自动化程度较高的装配技术尤其显得重要。复合材料的使用使飞机机体有可能采用大型整体结构件制造,如787最后总装只进行六大部件的对接,即前机身、中机身、后机身、机翼、水平安定面和垂直尾翼。这些整体大部件使装配过程中避免使用传统巨型工装,而更多地采用便携式工具。飞机结构件的移动不采用龙门吊车。

       柔性装配、自动钻铆等先进技术集成应用于复合材料大型部件的自动装配中。飞机柔性装配技术考虑作为装配对象的航空产品本身特征,基于飞机产品数字化定义,通过飞机柔性装配流程、数字化装配技术、装配工装设计、装配工艺优化、自动定位与控制技术、测量、精密钻孔、伺服控制、夹持等实现飞机零部件快速精确的定位和装配,可减少装配工装的种类和数量,提高装配效率和装配准确度,提高快速响应能力,缩短飞机装配周期,增强飞机快速研制能力。它是一种能适应快速研制、生产及低成本制造要求、满足设备和工装模块化可重组的先进装配技术。如B787的复合材料机翼结构件的移动采用了自动化导引车等柔性装配技术。
       自动钻铆机广泛应用于复合材料大型部件的自动装配,如A380机翼装配采用了自动化可移动钻孔设备。这些钻削设备与传统金属材料钻削设备的本质区别在于,为保持铆钉孔周围的结构完整性,要求钻孔时无分层,因此制孔一般要用硬质切削刀具,采用多步钻孔法。鉴于复合材料的制造方法不同,其可切削加工性也各异。例如,编织结构为“十”字形花样的织物,比单向排列的织物带易切削,后者的磨损力更大且易产生分层、钻孔时有纤维未切到的问题。因此,根据复合材料构件不同的成型方式,应选择不同的钻削参数、材料及形状的钻头。
意大利自动钻铆机
      
       复合材料制件无损检测设备主要需要配置大型超声C扫描设备和X光无损检测设备。此外,激光剪切摄影及激光超声检测也是主要发展方向。
       在超声检验技术方面最重要的进展之一是相控阵检验的开发。相控阵超声检验与传统超声检验相比,改进了探测的概率,并明显加快了检验速度。
       传统的超声检验要用许多个不同的探头来作综合性的体积分析,而相控阵检验用一个多元探头即可完成同样的结果。这是由于每一个元素探头可以进行电子扫描和电子聚焦,每一元素探头的启动有一个时间上的延迟。其结果是合成的超声束的入射角可加以变化,焦点深度也可以变化,这就是说体积检验的速度可以比传统法快得多。因为用传统法时,探头必须适时更换,而且必需多路传输才能得出不同的入射角和焦点深度。此外,相控阵探头可提供更宽的覆盖范围,从而比传统探头有更高的生产效率。
(8)复合材料数字化设计制造一体化。
       复合材料零件成型独特的工艺特点决定了它在设计制造方面与金属零件有很大差异,而且更加复杂。
复合材料构件数字化设计制造以复合材料设计/制造平台和附和材料数字化制造设备为软硬件基础。改变了传统复合材料的设计/制造方式,采用数字量形式对产品进行全面描述和数据传递,实现了设计与制造之间的无缝集成。
复合材料设计软件与现有CAD系统的集成为设计/制造复合材料构件提供了有力平台。包括初步设计、工程详细设计、制造详细设计和制造输出4个阶段。
       复合材料构件数字化制造过程包括预浸料下料、铺层铺放、固化等工序,目前复合材料构件数字化制造主要体现在预浸料自动下料、激光铺层定位和纤维自动铺放等方面。
       例如,在B787项目中复合材料构件均采用了FiberSIM软件进行数字化设计,将设计数据向全球伙伴发放,从而保证了复合材料构件数据的唯一性和准确性。由于B787大量采用数字化设计,因此其研发周期比B777缩短了3年。
复合材料构件数字化设计制造使实施并行工程成为可能,在设计早期阶段解决制造问题,大大减少了车间修改和重复工作。设  计和制造数据的无缝集成缩短了制造时间,减少了人工编程带来的误差,提高了构件质量。
结束语
       综上所述,随着复合材料在飞机上用量的递增,使复合材料制造业迅速成为飞机制造业的主要组成部分。今后飞机50%以上的结构件将由金属转为复合材料,复合材料制造将成为飞机制造的基本手段。复合材料制造工艺和专用设备是先进复合材料关键技术之一,值得我们投入大量的人力物力加以研发和应用。掌握了先进复合材料制造技术,就掌握了未来飞机的先进制造技术。

C. 简述高速切削技术的关键技术,并说明高速切削技术在航空制造中的应用

高速切削是指,高转速,高进给速度。表面光洁度非常高。
在航空领域,制回作航空设备外表面的加工要答求高光洁度。因此要采用高速切削。
而且,航空设备大多采用钛合金。超高硬度。因此需采用高速切削进行加工才能达到加工要求!!

D. 加工航空机械部件需要哪些设备

这个,加工部件需要的设备跟是否是航空件无关,跟零件的精度、质量要求有回关;五六十年代,答我们没有数控设备,也能生产出导弹的零部件;当然,有条件是可以买先进设备的,但是设备的投资是无止境的,没有最好,只有更好,具体还是看你做哪个部分的零件,根据具体零件的尺寸、形状、规格、等级、质量等要求进行选择设备。

E. 飞机都有哪些零件

结构件是飞机零件中最大的一种零件。这类零件主要用铝合金制造。基于制造工艺和零件重量考虑,以前主要采用铝板经铆而成(至今仍有部分零件采用此种方法制造)。现在采了全然不同的设计技术,需要将多种不同功能集成到一个结构件上。这就是集成设计技术。这种零件是用一块实体铝坯经铣削加工而成。这类零件很复杂,通常包含极小的底面和薄壁(0.6~2mm),呈蜂巢状。这类零件的几何形状由不同的表面及规定的曲面构成。接近飞机外部轮廓的表面也是必须是自由曲面。 图1 整体结构的Pilatus PC 9飞机主梁(图片提供:StarragHeckert公司) 例如,Pilatus PC 9飞机的主梁,在以前的设计中是由156个不同零件构成的。这样,就需要各种折弯设备和装配夹具。在Pilatus PC 12飞机上,这类部件采用了集成设计技术。 零件的数量减少到3个,而且是采用简单的螺栓连接(图1)。 在25年前,这家飞机公司在开发飞机时,由于没有复杂的软件工具,NC技术还处于初期阶段,只能用繁琐的编程语言,如APT、Fortran等等定义复杂的几何形状;NC机床还是采用21/rD控制,从而严重聘用制了复杂形面和几何形状的生成。 由于某种原因上述原因,为控制铝件的重量,用铝板构成机架,即将20余种不同形状的板材成型件组装和连接在一起构成一个大的结构件。零件成型过程极为复杂。工件材料要经过12次机械加工和4次热处理,由于几何形状的不一致、拉伸/断裂等,致使废品率极高。这种机架的装配需要6道工序,而且必须考虑到材料的拉伸问题。 如今,编程系统和CNC机床已经能使我们铣削加工出以前无法生成的形状。以前,采用传统技术,需要20多个板材成型件才能构成的部件,现在只用2个零件。几何形状极为复杂,必须完全满足零件的所有要求。用一块实体铝坯铣制一个零件,其中98%的材料都变成了废屑。 三步完成产品加工 NC编程过程需要的专业知识要求最高,要求集成各种不同生产工艺:CAD/CAM、切削刀具、夹具设计和铣削技术。现在只需三道貌岸然工序就可以制造出这样一个机架部件:1)获取经过预切削并带有夹持用孔的原材料,2)铣削零件,3)手动钻出铆钉孔(利用夹具)。 零件毛刺在加工过程中完成。首件检验合格后,铣削加工过程自动进行,无需操作员干预。这样就大大简化了尺寸和裂纹的检测,与以前的制造方法相比,降低了生产成本。集成结构还对零件装配具有重大影响。整个模块(部件)可以直接装配。所制造的零件公差极为严格,具有很好的互换性。装配精度得到保证,且过程稳定,大幅度缩短了所需的装配时间。 图2 特别适合于五轴联动加工的StarragHeckert公司的STC 1000/130机床,功率为70kW时,主轴转速为24,000r/min 适用于高速铣削的机床与刀具 坯料是用水刀将厚127mm或76mm的铝板切切割到近似形状。坯料尺寸为840×665mm,重90kg或60kg。 夹具包括角度板和标准孔系及加工工件第二面的真空接合适配板。机床采用特别适用于五轴联动加工的斯达拉格海科特STC 1000/130型机床:主轴功率为70kW,在100%负载运行时最高转速达24000r/min (图2);主轴锥孔:HSK63A;机床X/Y/Z轴行程为:1700mm/1600mm1950mm;主轴可倾范围:-60/+100°;工作台是B轴。该机床采用钢板焊接结构,具有较高的刚度。 整个加工过程需要7把切削刀具和4把钻头。刀具为整体刀体,最大直径为32mm,形状配合的刀片能防止其在以高达24000r/min的转速切削时离心力可能造成的损坏。全部刀具直径都在25mm以上,中空冷却,油雾润滑。起先直径小于25mm的刀具为整体硬质合金刀,采用收缩式刀柄。刀具长度为90和220mm.。 全部切削刀具连同刀柄都经过平衡,在24000r/min转时平衡质量为Q2.5。为保证加工过程的安全,精确定义了每把刀具的切削参数,即采用专用软件,对刀具组件进行了知识临界速度(自振)检测。零件经二次装夹完成全部加工(包括铆接孔)。为防止薄壁件在加工中的应力变形和保证严格控制的公差,面铣和周边铣削采用了高速铣削加工工艺。在总的铣削加工时间内,约60%的时间需要五轴联动加工,粗加工占总加工时间的40%,手动加工主要是去毛刺和钻部分铆钉孔。 图3 二次装夹时,利用一专用工件适配夹具夹持零件已加工面上的工艺搭子 结果超过预期 首先将工件用螺栓固定在夹具上,用雷尼绍测头识别零件。第一道貌岸然工序是用直径63mm 的刀头,沿Z面运动,将工件粗铣至接近最终形状。粗铣时的进给速度可达17m/min ,金属切除率达6500mm 3 /min。 第二道工序是用25mm整体硬质合金立铣刀粗铣出零件外形。由于这一轮廓面是曲面,要采用五轴联动加工才能获得一致的精加工允差。随后用直径16mm 整体硬质合金立铣刀,以9m/min的进给出量对此外形进行精加工(五轴联动)。零件的二次装夹加工也采用同一夹具。 二次装夹时,利用专用工件适配夹具夹持零件已加工面上的工艺搭子(图3)。其第一道工序仍是用63mm 的铣刀,沿Z面粗铣出零件轮廓,以下工序亦与上述第一次装夹的加工方法相同。随后的精加工极为关键。此时,零件已经变得极薄,在振动下极易损坏。为防止损坏零件,精加工时要先加工零件轮廓,再加工凹槽。最后一道工序还包括使用一把直径10mm 立铣刀将零件与工艺搭子分离。 就零件加工情况来看,对于这种新型飞机,各项结果均远远超出预期要求。所加工出的零件精度完全位于要求的严格公差范围内,具有完全的互换性。整个生产周期缩短了75%并减少了生产人员。由于采连续加工链,可以实现快速变换并简化了物流链。

F. 常见的金属切削工艺设备有哪些

从零件的设计图纸到零件成品合格交付,考虑到诸如金属零件工艺路线的安排、机床的选择、切削刀具的选择、零件定位装夹等一系列因素的影响,这样才能避免由于工艺方案考虑不周而可能出现的质量问题。金属切削机床就具有广泛的工艺性能,可用于直线圆柱、斜线圆柱、圆弧和各种螺纹、蜗杆等复杂工件,具有直线插补、圆弧插补各种功能,并在复杂零件中发挥了良好的经济效果。下面简单介绍下常见的金属切削机床设备有哪些:
一、车床设备
车床主要用于各种回转表面和回转体的端面。如车削内外圆柱面、圆锥面、环槽及成形回转表面,车削端面及各种常用的螺纹,配有工艺装备还可用于各种特形面。在车床上还能做钻孔、扩孔、铰孔、滚花等。
二、铣床设备
铣床一种用途广泛的机床,在铣床上可以用于平面(水平面、垂直面)、分齿零件(齿轮、花键轴、链轮乖、螺旋形表面螺纹、螺旋槽)及各种曲面。此外还可用于对回转体表面、内孔及进行切断等工艺。工件装在操作台上或分度头等附件上,铣刀旋转为主运动,辅以操作台或铣头的进给运动,工件即可获得所需的表面。由于是多刀断续切削,因而铣床的效率较高。
三、刨床设备
刨床主要分为牛头刨床、龙门刨床、单臂刨床及专门化刨床(如刨削大钢板边缘部分的刨边机、刨削冲头和复杂形状工件的刨模机)等。龙门刨床因有一个由顶梁和立柱组成的龙门式框架结构而得名,操作台带着工件通过龙门框架作直线往复运动,多用于大平面(尤其是长而窄的平面),也用来沟槽或同时完成数个中小零件的平面。大型龙门刨床往往附有铣头和磨头等部件,这样就可以使工件在一次安装后完成刨、铣及磨平面等。单臂刨床具有单立柱和悬臂,操作台沿床身导轨作纵向往复运动,多用于宽度较大而又不需要在整个宽度上的工件。
四、插床设备
插床主要用于各种平面(如水平面、垂直面和斜面及各种形槽、燕尾槽等)、直线成型表面。假如配有仿形装置,还可用于空间曲面,如汽轮机叶轮,螺旋槽等。这类机床的刀具结构简单,回程时不切削,一般用于单件小批量工件。
五、镗床设备
镗床适用于机械车间对单件或小批量的零件进行平面铣削和孔系工艺,主轴箱端部设计有平旋盘径向刀架,能精确镗削尺寸较大的孔和平面。此外还可进行钻、铰孔及螺纹。
六、磨床设备
磨床用磨料磨具(砂轮、砂带、油石或研磨料等)作为工具对工件表面进行切削的机床,统称为磨床。磨床可用于各种表面,如内外圆柱面和圆锥面、平面、齿轮齿廊面、螺旋面及各种成型面等,还可以刃磨刀具和进行切断等,工艺范围十分广泛。由于磨削轻易得到高的精度和好的表面质量,所以磨床主要用于零件精工,尤其是淬硬钢件和高硬度非凡材料的精工。
七、钻床设备
钻床具有广泛用途的通用性机床,可对零件进行钻孔、扩孔、铰孔、锪平面和攻螺纹等。在摇臂钻床上配有工艺装备时还可以进行镗孔;在台钻上配上万能操作台还可铣键槽。
八、齿形设备
齿形切削机床齿轮是最常用的传动件,有直齿、斜齿和人字齿的圆柱齿轮,直齿和弧齿的圆锥齿轮,蜗轮以及非圆形齿轮等。用于齿轮轮齿切削表面的机床称为齿轮机床。

G. 航空母舰制造中需要哪些技术支持

1、从技术难度分析,设计和建造航母必须具备五大能力:大功率计算机辅助工程设计、大型试验水池和风洞、航母特殊钢、配套电子设备、舰载机技术。
2、建造航母必具大功率计算机辅助工程设计能力。冷战当年,美国依靠大功率计算机的帮助,仅在一年半内就绘制出“尼米兹”级核动力航母建造所需的10万余张图纸。而苏联没有这些条件,只好发动各设计局的精兵强将“土法上马”,大量运用人工运算和绘制,结果用了比美国多两倍的时间才勉强拿出大吨位航母的设计图纸。
3、拥有大型风洞和试验水池能力,是航母设计的重要手段。目前世界上只有美俄英法几个屈指可数的国家能够拥有这些研究和试验设施。制造真正意义上的航母,前期对设计、制造、材料等相关领域的研究和试验要求很高。
4、航母用钢也是众多国家心中永远的痛。由于航母船体必须承受住9级以上风浪,对船板要求很高。目前最具有代表性的莫过于美国研制的HY-100特种钢,它被美国政府视为战略物资,不允许擅自出口。
5、配套电子设备能否跟上航母建造周期也是重要制约因素。美国航母使用的电子配套系统,一般在船体建造前几年便已着手研制和生产,避免在总装时出现“舰等设备”局面。苏联在这方面却交足了学费。以“库兹涅佐夫”号为例,该舰原定于1985年12月底下水,但海军在1984年底提出改换舰上的无线电对抗系统型号,造舰计划顿时陷于忙乱之中。新的型号设计变化致使12个系统订货脱期和方案被迫修改;造成报废电缆400公里,新增电缆1200公里。
6、此外,建造航母,最关键的武器——舰载机也不是谁都能制造的。现今舰载机制造技术控制在极少数国家手里。俄罗斯倚仗其雄厚的航空工业力量在舰载机制造上尚可与美国比肩。印度就是从俄购买的航母配属舰载机。舰载机与常规陆基战机相比,强调机体结构强度更高,必须具有短距离起飞能力,能够抗海洋性气候的腐蚀,机翼能够折叠。这些苛刻要求,常使得那些有心造舰,却无力造机的国家陷于窘境。

H. 飞机有几个构件

大多数飞机由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置。 机翼 机翼的主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚转;放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。机翼有各种形状,数目也有不同。在航空技术不发达的早期为了提供更大的升力,飞机以双翼机甚至多翼机为主,但现代飞机一般是单翼机。 在机翼设计的过程当中,经常提到的一个矛盾是飞机的稳定性和操作性两个方面,上单翼飞机好像提起来的塑料袋,他非常的稳定,但是操作性稍微差一点;下单翼飞机好像托起来的花瓶,操作性很灵活,但是稳定性就稍微逊色一点。所以民用飞机一般采用上单翼设计,而表演用途或者其他对操作性要求高的的飞机都采用下单翼设计。 机身 机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。但是飞翼是将机身隐藏在机翼内的。 尾翼 尾翼包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降舵组成(某些型号的民用机和军用机整个平尾都是可动的控制面,没有专门的升降舵)。垂直尾翼则包括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。 起落架 起落装置又称起落架,是用来支撑飞机并使它能在地面和其他水平面起落和停放。陆上飞机的起落装置,一般由减震支柱和机轮组成,此外还有专供水上飞机起降的带有浮筒装置的起落架和雪地起飞用的滑橇式起落架。它是用于起飞与着陆滑跑、地面滑行和停放时支撑飞机。 一般的飞机起落架有3个支撑点,根据这三个支撑点的排列方式,往往分为前三角起落架和后三角起落架。其中,前三角起落架指前面一个支撑点,后面两个支撑点的起落架形式,使用此类起落架的飞机往往静止时仰角较小,在起飞时很快就可以达到很高的速度,当速度达到一定的值时,向后拉起操纵杆,压低水平尾翼,这时前起落架会稍稍抬起,瞬间机翼的两面风速差达到临界,飞机得到足够的升力后即可起飞;后三角起落架采用的是前面两个支撑点,后面一个支撑点的形式,使用此类起落架的飞机往往静止时仰角较大,当飞机在跑道上达到一定的速度的时候,机翼两面的风速差即可达到一个临界,此时后起落架会被抬起,驾驶员继续推油门杆,同时向后拉操作杆以控制飞机平衡,当速度达到一定的值时,飞机即可起飞。 动力 动力装置主要用来产生拉力或推力,使飞机前进。其次还可以为飞机上的用电设备提供电力,为空调设备等用气设备提供气源。 现代飞机的动力装置主要包括涡轮发动机和活塞发动机两种,应用较广泛的动力装置有四种:航空活塞式发动机加螺旋桨推进器;涡轮喷射发动机;涡轮螺旋桨发动机;涡轮风扇发动机。随着航空技术的发展,火箭发动机、冲压发动机、原子能航空发动机等,也有可能会逐渐被采用。动力装置除发动机外,还包括一系列保证发动机正常工作的系统,如燃油供应系统等。 讲到飞机的动力装置,就不得不讲一下飞机的推重比。推重比就是飞机的推力与飞机所受到的重力的比值。目前,一般的民用飞机的推力是小于飞机的重力的,因为每增加一个KN的推力,都要增加飞机的制造成本。所以很多飞机都有一定的爬升速度和爬升角度。而当飞机的推力大于飞机的重力的时候,飞机可以实现高速爬升甚至垂直爬升,很多需要高机动性能的飞机,比如战斗机等都有很大的推力和很小的重力。 另外,等同重力的要求下,飞机的推力越大,机翼面积就越小,飞机巡航阻力就越小,速度就越快,滑跑距离就越长。反之亦然。 飞机除了上述五个主要部分之外,还装有各种仪表、通讯设备、领航设备、安全设备和其它设备等。

I. 制造飞机需要哪些材料和技术

目前在飞机上应用的主要有树脂基复合材料。碳纤维复合材料等。树脂基复合材料可分为“热固性”与“热塑性”两大类。由于热塑性复合材料具有工作温度高、韧性好和可重复成形等优点,故美国F-22飞机早期设想主要采用热塑性复合材料,而生产型F-22上却完全相反,热塑性复合材料只有1%的用量,热固性复合材料用量却高达23%,这是因为热塑性复合材料的成本较高、预浸料硬挺和缺乏粘性而难以铺贴成工件等。“环氧”和“双马来酷亚胺”都属于热固性树脂,通常“环氧”应用较多,而F-22的全部蒙皮以及大量的肋、梁及水平安定面等都选用了“双马来”,“环氧”则只用于一些工作温度较低的进气道和框架等。

复合材料主要分布在飞机的哪些部位?

主要用于雷达罩、进气道、机翼(含整体油箱等)、襟翼、副翼、垂尾、平尾、减速板及机身蒙皮等。例如美国的F-22机身蒙皮全都是高强度、耐高温的树脂基复合材料,法国的“阵风”机翼大部分部件和机身的一半都采用了碳纤维复合材料。

隐形材料

美国拥有大量的隐形飞机,像F-l17A、B-IB、B-2、F-22等,它们的隐形效果除采用外形设计(如B-2采用翼身融合、圆滑过渡的外形; F— 117A采用多面体外形)外,再就是取决于其隐形材料。

1991年的海湾战争中美国的隐形战斗机F-117A出动1000多架次而无一受损,在国际上引起了极大的反响。目前世界各国都很重视对隐形飞机的研究。隐形材料堪称隐形飞机的一大法宝。隐形材料可分为涂敷型和结构型两种,前者指涂料、胶膜一类的材料,后者指功能与结构一体化的纤维增强树脂基复合材料。F-117A只少量采用了复合材料,基本上是金属半硬壳式结构,因此机身。机翼和尾翼均涂覆了铁氧体吸波材料,而F-22的机身和机翼蒙皮基本上都由复合材料制成,只需要在一些金属蒙皮上涂覆吸波材料,该涂料大概含磷基铁。联合攻击战斗机JSF为了适应海上环境,有可能采用不含谈基铁涂料,以防止盐雾腐蚀。JSF还将同时采用有机聚合物胶膜以减少污染、降低成本和改善可维护性。

俄罗斯的l.44飞机采用了等离子体隐形技术,访问这种隐形技术会不会对隐形材料的发展带来危机?

俄罗斯的一些飞机设计师的思路确实与美国不同,他们认为美国采用的“外形设计+隐形材料”的隐形方案将影响飞机的机动性和战斗力,于是另辟溪径,开发了等离子体隐形技术,即在飞机的某些部位装上一些等离子发生器,在飞行过程中释放等离子流,在飞机周围形成等离子层,将飞机屏蔽起来,使雷达无法发现。现在的问题是尚不清楚这~技术的成熟程度和实际效果,预计在未来相当长的一段时间里人们不会放松对隐形材料的研究开发。

今后飞机上还会采用哪些新材料?

智能结构是今后飞机发展的一大趋势、因此智能材料成为当前研究的新热点。飞机上采用的智能结构是由各种智能材料制成的传感元件、处理元件和驱动元件组成的,而这三个组成部分相当于人的神经、大脑和肌肉、美国先进研究计划局与格鲁曼公司签订了一个合向,发展和验证智能自适应机翼以提高飞机效率。例如对强击机而言,智能自适应机翼可使它从航母上起飞的有效载荷提高20%。格鲁曼公司的设计方案是将光导纤维埋入树脂基复合材料制成机翼,这些光导纤维能像神经那样感知机翼上因气动条件变化而引起的压力变化,根据光传输信号进行处理后发出指令,通过驱动元件驱动机翼前缘和后线自行弯曲。驱动可通过电流让电陶瓷变形来实现,也可通过磁场让磁致伸缩材料变形来实现。或通过加热让形状记忆合金发生位移来实现,例如有一种形状记忆合金驱动器可产生9吨推力和150毫米位移。格鲁曼公司已决定以缩比为1/6的F/A-18飞机自适应机翼模型进行开发研究,还打算应用于无人机上。智能材料压电陶瓷制成的传感器和驱动器可解决机翼和尾翼的颤振问题,例如F/A-JSE/F(美国海军计划未来10年内采购548架)垂尾的振动试验表明,振动减少了80%。智能材料还将在其他领域发挥它的聪明才智,例如美国正在制造一种小型智能炸弹,可使一架重型轰炸机同时精确攻击数百个独立目标,还准备给这种炸弹装上智能引信,巧妙地做到‘不见目标不拉弦”。新的智能材料正在不断开发出来,例如美国开发成功一种磁致形状记忆合金、比热致形状记忆合金的性能更好人如美国一家公司发展了一种改进型磁致伸缩金属材料(由俄、镐、铁线钱的合金), 比以往的磁致伸缩材料的伸长大40倍,可直接把电能转换为机械能《即做驱动器),也可把机械能辍换为电能(即做传感器)。总之,智一能材料虽然尚处于早期开发阶段,但正孕育着新的突破和大的发展。

在未来的先进发动机中,哪些新型材料将获得应用或扩大用量?

主要有树脂基复合材料、金属基复合材料、陶瓷基复合材料和金属间化合物等。树脂基复合材料因其综合性能(特别是耐热性能)不断提高,故从20世纪90年代初开始逐渐“进驻”发动机,当前已初露锋芒,未来的用量将不断扩大 。F119发动机正在执行用树脂基复合材料取代钛合金制造风扇送气机区的计划,可节省结构重量6.7公斤,并正在考虑用树脂基复合材料风扇叶片取代现在的钛合金空心风扇叶片,以期减轻结构重量30%。金属基复合材料因其诱人的高比强度而已研究多年,但直到最近才有极少量的应用,世界上第一个在航空上应用的钛基复合材料(属于金属基复合材料)零件就是F119发动机矢量喷管驱动器活塞。目前钛基复合材料的价格仍很昂贵,今后其用量的拓展将主要取决于成本的降低程度。陶瓷基复合材料因其很高的使用温度(140℃甚至更高)和很低的密度(2-4g/cm3),颇受发动机设计师和材料工作者的重视,是未来高推重比(l5-20)发动机涡轮及燃烧系统的首选材料,目前在使用可靠性方面还有些担心,因此只限用于少量非关键受力部件,如用于Fll9发动机矢量喷管的内壁板等。金属间化合物是世界各国广泛研究的材料科学前沿命题,近期已把热点集中于密度很小(3.7-3.9g/cm3)和长期使用温度较高(700- 850C)的钛铝基合金,它将取代部分镍基合金而显著减轻发动机结构重量,具有良好的潜在应用前景。目前,钛铝基合金制成的第6级压气机转子叶片正在Fll9发动机上进行验证试验。

J. 飞机各部位构件的材料组成有哪些

机翼材料 机翼是飞机的主要部件,早期的低速飞机的机翼为木结构,用布作蒙皮。这种机翼的结构强度低,气动效率差,早已被金属机翼所取代。机翼内部的梁是机翼的主要受力件,一般采用超硬铝和钢或钛合金;翼梁与机身的接头部分采用高强度结构钢。机翼蒙皮因上下翼面的受力情况不同,分别采用抗压性能好的超硬铝及抗拉和疲劳性能好的硬铝。为了减轻重量,机翼的前后缘常采用玻璃纤维增强塑料(玻璃钢)或铝蜂窝夹层(芯)结构。尾翼结构材料一般采用超硬铝。有时歼击机选用硼(碳)纤维-环氧复合材料,以减轻尾部重量,提高作战性能。尾翼上的方向舵和升降舵采用硬铝。 机身材料 飞机在高空飞行时,机身增压座舱承受内压力,需要采用抗拉强度高、耐疲劳的硬铝作蒙皮材料。机身隔框一般采用超硬铝,承受较大载荷的加强框采用高强度结构钢或钛合金。很多飞机的机载雷达装在机身头部,一般采用玻璃纤维增强塑料做成的头锥将它罩住以便能透过电磁波。驾驶舱的座舱盖和风挡玻璃采用丙烯酸酯透明塑料(有机玻璃)。飞机在着陆时主起落架要在一瞬间承受几百千牛乃至几兆牛(几十吨力至几百吨力)的撞击力,因此必须采用冲击韧性好的超高强度结构钢。前起落架受力较小,通常采用普通合金钢或超硬铝.从60年代末期开始,在飞机上使用的复合材料,已由当初只应用于口盖和舱门等非承力构件,逐步扩大应用到减速板和尾翼等次承力构件,而且正向用于机翼甚至前机身等主承力构件的方向发展。另外,为提高突防攻击能力、不被敌方雷达捕获,已在飞机上采用吸波材料

阅读全文

与航空构件有哪些需要哪些切削技术和设备相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59