Ⅰ 轨道交通通信系统包括哪些子系统
传输系统、公务电话系统、专用电话系统、无线集群通信系统、闭路电视监控系统、有线广播系统、时钟系统、乘客导乘信息系统、电源和接地系统、地铁公共覆盖系统等系统。
1、无线集群通信系统是指大量无线用户自动共享少量无线信道的系统。在我国无线集群通信系统所使用的频段是800MHz频段。
2、闭路电视(又称CCTV)监控系统是安防领域中的重要组成部分,系统通过摄像机及其辅助设备(镜头、云台等),直接观察被监视场所的情况,同时可以把监视场所的情况进行同步录像。另外,电视监控系统还可以与防盗报警系统等其他安全技术防范体系联动行动,使用户安全防范能力得到整体的提高。
3、时钟系统,主要应用于要求有统一时间进行生产,调度的单位如:电力,机场、轻轨、地铁、体育场馆、酒店、医院、部队、油田、水利工程等领域。大区域时钟系统主要由母钟和多台子钟构成。

(1)地铁5g通信设备包括哪些扩展阅读:
闭路电视的一些主要设备:
1、摄像机: 在系统中,摄像机处于系统的最前沿,它将被设物体的光图像转变成电信号--视频信号,为系统提供信号源,因此它是系统中最重要的设备之一。
2、摄像机镜头:摄像机光学镜头的作用是把被观察目标的光像聚焦于CCD传感器件上,在传感器件上产生的图像将是物体的倒像,尽管用一个简单的凸透镜就可以实现上述目的,但这时的图像质量不高,不能在中心和边缘都获得清晰的图像,为此往往附加若干透镜元件,组成一道复合透镜,方能得到满意的图像。
3、云台:它与摄像机配合使用能达到上下左右转动的目的。扩大一台摄像机的监视范围,同时能在一定范围内跟踪目标并进行摄像,提高了摄像机的实用价值。由于使用环境不同,云台的种类很多。
4、防护罩(防尘罩)和支架、解码器: 防尘罩的作用是用来保护摄像机和镜头不受诸如有害气体、大灰尘及人为有意破坏等环境条件的影响。
Ⅱ 5g包括哪些内容
对于5G整个产业链,我们可以简单分为上中下游三个方面。
上游主要是基站升级(含基站射频、基带芯片)
中游网络建设(网络规划设计公司、网络优化/维护公司)
下游产品应用及终端产品应用场景构成。(云计算、车联网、物联网、VR/AR)
上中下游里面又可以包括器件原材料、基站天线、小微基站、通信、网络设备、光纤光缆、光模块、系统集成与服务商、运营商等各细分产业链。
一、5G架构体系
我们将5G架构体系划分为基站系统、网络结构、应用场景和终端设备四个部分,每部分都对应各自不同的产业链环节。
终端设备:5G 的终端设备将不局限于手机和电脑,还将涵盖家电、汽车、穿戴设备、工业设备等,其核心产业链环节为通信芯片、通信模块、天线和射频等部分。
基站系统:基站是提供无线覆盖和信号收发的核心环节,包括基站主设备和室外天馈系统,其中基站主设备为BBU(基带单元),室外天馈系统包括天线、RRU(远端射频单元)等。由于5G高网络容量和全频谱接入需求,天线射频模块集成、大规模天线技术(Massive MIMO)、小微基站和室内分布是基站系统演进的主要方向。
网络架构:为适应不同应用场景,5G网络架构需要进行颠覆性的变革,其关键在于利用 SDN (软件定义网络)/NFV(网络功能虚拟化)技术,形成包括基础设施、管道能力、增值服务、数据信息等不同的能力集,实现网络功能虚拟化、资源集中化、服务自动化、管理操作云平台化。5G 网络架构的产业链包括通信网络设备(SDN/NFV 解决方案)、光纤光缆、 光模块、网络规划运维等环节,其中最核心环节为通信网络设备及SDN/NFV 解决方案。
应用场景:5G 最革命性的意义在于与工业设施、医疗仪器、交通工具等的深度融合,有效满足工业、医疗、交通等垂直行业的多样化业务需求,形成智慧城市、远程医疗、工业自动化、自动驾驶等垂直领域的典型应用,实现万物互联的愿景。其产业链环节主要为系统集成与行业解决方案、大数据应用、物联网平台解决方案、增值服务与行业应用等。
Ⅲ 地铁有哪些设备
有BAS、FAS、AFC、PIS、屏蔽门、机电监控、给排水、低压照明动力等设备版。
1、地铁权车站现场设备主要包括TVM、BOM、AGM、ISM、PCA等。其中:TVM主要完成车票自动发售;BOM主要完成车票发售、充值、补票及查询;AGM主要完成进出站自动检票;ISM主要完成储值票充值、查询;PCA主要完成车票验票,并具手持检票功能。
2、终端设备接受SC参数设定及指令,完成规定操作及信息提示;生成并上传全部交易数据、寄存器数据,生成日志数据;按要求存储数据;设备故障自诊断和故障提示;在发生通信故障等情况时能独立运行,并能通过外接媒体实现数据导出,故障恢复后数据自动上传。
3、车票是记录乘客乘车信息的媒介和载体,能记录车票的系统编号、安全信息、车票种类、个人信息、进、出站信息、金额、有效期、历史交易记录等信息,与车站现场设备共同完成自动售票、检票功能。车票采用符合 ISO14443标准的非接触式IC卡作为轨道交通的信息载体。储值票采用卡式,单程票采用简易非接触式IC卡(薄卡封装),票卡芯片均符合ISO14443-A标准。
Ⅳ 通信设备都是有哪些
通信设备分为:1.核心层设备;2汇聚层设备;3.接入层设备。
核心层设备:主要是高端路内由设容备,华为,中兴,Alcatel都有,可以处理网络层次4层以上的;
汇聚层设备:中兴89系列,32系列,可以做3层处理的交换设备;
接入设备:包括运营商的接入设备和用户端的接入终端;
Ⅳ 地铁车站设备有哪些
BAS
建筑物或建筑群内的电力、照明、空调、给排水、消防、运输、保安、车库管理设备或系统,以版集中监视、控权制和管理为目的而构成的综合系统。
FAS
火灾报警系统(FAS)具有自己的网络结构和布线系统,以实现在任何情况下,该系统都可以独立的操作、运行和管理。随着计算机技术和网络技术的发展,火灾报警系统已具有同楼宇管理系统(BMS)联网的能力。
屏蔽门
屏蔽门是指在站台上以玻璃幕墙的方式包围地铁站台与列车上落空间。列车到达时,再开启玻璃幕墙上电动门供乘客上下列车。

(5)地铁5g通信设备包括哪些扩展阅读
地铁是铁路运输的一种形式,指在地下运行为主的城市轨道交通系统,即“地下铁道”或“地下铁”(Subway、tube、underground)的简称;许多此类系统为了配合修筑的环境,并考量建造及营运成本,可能会在城市中心以外地区转成地面或高架路段。地铁是涵盖了城市地区各种地下与地上的路权专有、高密度、高运量的城市轨道交通系统(Metro),中国台湾地铁称之为“捷运”(Rapid transit)。
Ⅵ 地铁通信采用的是什么设备
地铁通信采用自动交换电话、调度电话、站间行车电话、无线通信、广播向版导系统、权电视监视系统、车辆段通信系统、公安电话、事故救援电话等完善的专用通信网。地铁行车信号采用轨道电路自动闭塞信号和电气集中设备。前者是以一段地铁线路的钢轨为导体构成电路,当这段线路被列车占用时,轨道电路就使信号机自动关闭而不使其他列车进入这段线路;后者是通过信号楼内的控制台控制全车站的信号机和道岔。
Ⅶ 5G通信都需要哪些专
通信工程
Ⅷ 通信设备包括那些
常用的有线通信设备有:电脑、电视、电话、PCM、光端机、服务器等。
1、计算机(computer)俗称电脑,是现代一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。
由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。可分为超级计算机、工业控制计算机、网络计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机、光子计算机、量子计算机等。

4、光端机,就是光信号传输的终端设备。由于目前技术的提高,光纤价格的降低使它在各个领域得到很好的应用(主要体现在安防监控),因此各个光端机的厂家就好比是雨后春笋般发展起来。
但是这里的厂家大部分技术并不是完全成熟,开发新技术需要耗资和人力、物力等,这些生产厂家多是中小企业,各品牌也先后出现。但是质量上还是差不多的,国外的光端机好但是价格昂贵,因此,国内厂家把生产光端机转型出路了,用来满足国内需要。
5、服务器是计算机的一种,它比普通计算机运行更快、负载更高、价格更贵。服务器在网络中为其它客户机提供计算或者应用服务。服务器具有高速的CPU运算能力、长时间的可靠运行、强大的I/O外部数据吞吐能力以及更好的扩展性。
根据服务器所提供的服务,一般来说服务器都具备承担响应服务请求、承担服务、保障服务的能力。服务器作为电子设备,其内部的结构十分的复杂,但与普通的计算机内部结构相差不大,如:cpu、硬盘、内存,系统、系统总线等。
Ⅸ 5G需要哪些核心设备
一、大规模天线:大规模多天线技术(Massive MIMO)被认为是5G的关键技术之一,是唯一可以十倍、百倍提升系统容量的无线技术。大规模多天线技术能够通过不同的维度(空域、时域、频域、极化域等)提升频谱利用效率和能量利用效率.
二、新型多址技术:eMBB场景的多址接入方式应基于正交的多址方式,非正交的多址技术只限于mMTC的上行场景。eMBB的多址技术将更可能采用DFT-S-FDMA和OFDMA.而华为SCMA、中兴MUSA和大唐的PDMA等将在2017年竞争mMTC的上行多址方案。
三、高频段通信需统一划定:未来5G系统将面向6GHz以下和6GHz以上全频段布局,以综合满足网络对容量、覆盖、性能等方面的要求。目前,6GHz以下的低频段拥挤不堪,6GHz以上的高频段研发不足,这是对未来海量的5G频谱需求最大的挑战。

四、新型多载波技术:5G新空口多载波技术将全面满足移动互联网和物联网的业务需求。选择新的波形类型时有许多因素要考虑,包括频谱效率、时延、计算复杂性、能量效率、相邻信道共存性能和实施成本。截至目前,业内呼声最高的3个候选技术是:F-OFDM、FB-OFDM和UF-OFDM。
五、先进编码调制:eMBB场景的上行和下行数据信道均采用flexible LDPC编码方案;eMBB场景的上行控制信道采用Polar编码方案;eMBB场景的下行控制信道倾向于采用Polar编码方案而不是TBCC(咬尾卷积码)方案;
六、全双工技术:可以使通信终端设备能够在同一时间同一频段发送和接收信号,理论上,比传统的TDD或FDD模式能提高一倍的频谱效率,同时还能有效降低端到端的传输时延和减小信令开销。全双工技术的核心问题是如何有效地抑制和消除强烈的自干扰。
七、超密集组网:超密集异构组网技术可以促使终端在部分区域内捕获更多的频谱,距离各个发射节点距离也更近,提升了业务的功率效率、频谱效率,大幅度提高了系统容量,并天然地保证了业务在各种接入技术和各覆盖层次间负荷分担
八、组网关键技术:随着软件定义网络(SDN)和网络功能虚拟化(NFV)等技术的逐步成熟,5G组网技术已能实现控制功能和转发功能的分离,以及网元功能和物理实体的解耦,从而实现网络资源的智慧感知和实时调配,以及网络连接和网络功能的按需提供和适配。