導航:首頁 > 五金知識 > matlab優化工具箱用法

matlab優化工具箱用法

發布時間:2023-08-11 18:59:13

⑴ matlab gpops工具箱怎麼用

GPOPS是一個可以進行大規模非線性優化的MATLAB工具箱。gpops工具箱怎麼用,你可以到CSDN上搜索《gpops工具箱+例子(詳細注釋)+官方手冊+安裝方法》查看。

⑵ 怎麼用mtlab優化工具箱求目標函數為BP神經網路訓練結果的極值

需要聲明全局變數。分別在兩段程序的開頭加上

globalnet

不然無法在函數中調用net.


如果你要多於一個函數共用一個簡單的變數,簡單的處理方法就是把這個變數在所有函數中定義為global全局變數。在命令行做同樣的事情,如果你要工作空間訪問上述變數。這個全局變數的定義必須出現在變數被應用於一個函數之前。雖然不是要求,但全局變數也最好以大寫字母開頭,這樣可以同其他變數區別出來。舉個例子,做一個以falling.m命名的M-文件。

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

然後交互地輸入語句

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

這兩個變數在函數中表示同一個內容。之後你可以交互地修改GRVITY並獲得新的解法,而不用再編輯文檔。

注意:1 全局變數列表中各個變數名不能用逗號分隔。 如: global a b c
2 全局變數使用前必須再matlab工作空間中申明,如果再具體得函數中用則要在函數前面申明,否則在該函數中即使用到了該變數,也會被當成局部變數使用。

⑶ matlab中的csape怎麼使用

function pp = csape(x,y,conds,valconds)
%pp=csape(x,y,'變界類型','邊界值'),生成各種邊界條件的三次樣條插值. 其中,(x,y)為數據向量
%邊界類型可為:'complete',給定邊界一階導數.
% 'not-a-knot',非扭結條件,不用給邊界值.
% 'periodic',周期性邊界條件,不用給邊界值.
% 'second',給定邊界二階導數.
% 'variational',自然樣條(邊界二階導數為0)
% .
%例 考慮數據
% x | 1 2 4 5
% ---|-------------
% y | 1 3 4 2
%邊界條件S''(1)=2.5,S''(5)=-3,
% x=[1 2 4 5];y=[1 3 4 2];
% pp=csape(x,y,'second',[2.5,-3]);pp.coefs
% xi=1:0.1:5;yi=ppval(pp,xi);
% plot(x,y,'o',xi,yi);
pp0 = csape(x,[1,zeros(1,length(y)),0],[1,0]);
pp = csape( x, [1 sin(x) 0], [1 2] ) %左邊的點一階導數為1,右邊的點二階導數為0
splinetool是一個圖形化的插值工具
lagrange插值,由於lagrange插值可能不收斂,所以工程中很少有人用這種插值。matlab中沒有專門的lagrange插值函數。但我們可以自己編一個,如下:
%lagrange插值子函數
function y=lagrange(x0,y0,x)
n=length(x0); m=length(x);
for i=1:m
z=x(i);
s=0.0;
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end

⑷ 如何使用matlab中的工具箱

1、首先給出對應的擬合數據:>> x=1:100;>> y=2*x;一條直線。

⑸ 用matlab工具箱怎麼對garch模型做預測

對garch模型做預測可以用matlab自帶的garchfit()函數,該函數主要用於估計ARMAX / GARCH模型參數。

garchfit()函數使用格式:

[Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(Spec,Series,X)

Coeff——輸入參數。接受由garchset,garchget,garchsim,garchinfer,和garchpred結構產生的參數。

Errors——系數的估計誤差(即標准誤差)的結構

LLF——對於優化目標函數值與參數相關的估計發現Coeff。garchfit執行優化使用優化工具箱fmincon函數。

Innovations——創建(即殘差)序列推導的時間序列列向量。

Sigmas——與創建相對應的條件標准偏差向量。

Summary——顯示優化過程的摘要信息結構。

Spec——包含條件均值和方差規范的GARCH規范結構。它還包含估計所需的優化參數。通過調用garchset創建這個結構。

Series——觀測的時間序列列向量。

X——觀測數據的時間序列回歸矩陣。

例如:

clc

spec = garchset('C',0,'K',0.0001,'GARCH',0.9,'ARCH',0.05);%指定模型的結構

[e,s,y]= garchsim(spec,1000);

[Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(spec,y) %擬合參數

運行後得到的部分結果



⑹ 怎樣運用matlab實現無約束非線性優化問題中的多種方法

- MATLAB中用遺傳演算法求解約束非線性規劃問題 Solution of optimization with nonliear constraints programming by genetic alogorithm in MATLAB 作者:王勇, 期刊-核心期刊 哈爾濱商業大學學報(自然科學版)JOURNAL OF HARBIN UNIVERSITY OF COMMERCE(NATURAL SCIENCES EDITION) 2006年 第04期
- 約束優化問題的遺傳演算法求解 Genetic algorithm solution for constrained optimization 作者:宋松柏,蔡煥傑,康艷, 期刊-核心期刊 西北農林科技大學學報(自然科學版)JOURNAL OF NORTHWEST SCI-TECH UNIVERSITY OF AGRICULTURE AND FORESTRY(NATURAL SCIENCE EDITION) 2005年 第01期
- 約束優化問題的遺傳演算法求解 Genetic algorithm solution for constrained optimization 作者:宋松柏,蔡煥傑,康艷, 期刊-核心期刊 西北農林科技大學學報(自然科學版)JOURNAL OF NORTHWEST SCI-TECH UNIVERSITY OF AGRICULTURE AND FORESTRY(NATURAL SCIENCE EDITION) 2005年 第01期
- 非線性規劃問題求解的遺傳演算法設計與實現 Design and Realization of Genetic Algorithm for Solving Nonlinear Programming Problem 作者:劉雪梅,李國民,李景文,畢義明, 期刊-核心期刊 系統工程與電子技術SYSTEMS ENGINEERING AND ELECTRONICS 2000年 第02期
- 解非線性約束規劃問題的新型多目標遺傳演算法 New multi-objective genetic algorithm for nonlinear constraint programming problem 作者:劉淳安,LIU Chun-an, 期刊-核心期刊 計算機工程與設計COMPUTER ENGINEERING AND DESIGN 2006年 第05期
- 解非線性約束規劃問題的新型多目標遺傳演算法 New multi-objective genetic algorithm for nonlinear constraint programming problem 作者:劉淳安, 期刊-核心期刊 計算機工程與設計COMPUTER ENGINEERING AND DESIGN 2006年 第05期
- 基於Matlab遺傳工具箱的高強混凝土配合比優化 Mixtures Optimal Design of High-strength Concrete Based on GA Toolbox of MATLAB 作者:陸海標,鄭建壯,徐旭嶺, 期刊 浙江水利水電專科學校學報JOURNAL OF ZHEJIANG WATER CONSERVANCY AND HYDROPOWER COLLEGE 2007年 第03期
- 遺傳演算法求解約束非線性規劃及Matlab實現 The Solution of Optimization with Nonliear Constraints Programming with Genetic Algorithm and Demonstration by Matlab 作者:倪金林, 期刊-核心期刊 大學數學COLLEGE MATHEMATICS 2005年 第01期
-
- 基於遺傳演算法的非線性多目標規劃及其在油田開發規劃中的應用 作者:張曉東, 李樹榮, 熊福力, 會議 第二十二屆中國控制會議第二十二屆中國控制會議論文集(上) 2003年
- 區間非線性規劃問題的確定化描述及其遞階求解 Deterministic Interpretation of Interval Nonlinear Programming and Its Hierarchical Optimization Solutions 作者:蔣崢,戴連奎,吳鐵軍, 期刊-核心期刊 系統工程理論與實踐SYSTEMS ENGINEERING-THEORY & PRACTICE 2005年 第01期
- 區間非線性規劃問題的確定化描述及其遞階求解 Deterministic Interpretation of Interval Nonlinear Programming and Its Hierarchical Optimization Solutions 作者:蔣崢,戴連奎,吳鐵軍, 期刊-核心期刊 系統工程理論與實踐SYSTEMS ENGINEERING-THEORY & PRACTICE 2005年 第01期
- 一種新的求解非線性規劃的混合遺傳演算法 作者:李豐兵, 會議 第八屆中國青年運籌信息管理學者大會第八屆中國青年運籌信息管理學者大會論文集 2006年
- 一種啟發式演算法求解有交易成本組合投資問題 作者:安智宇, 會議 第三屆不確定系統年會第三屆不確定系統年會論文集 2005年
- 基於遺傳演算法的設計地震反應譜標定方法 Calibrating Method of Seismic Response Spectrum Based on Genetic Algorithm 作者:夏江,陳清軍, 期刊-核心期刊 力學季刊CHINESE QUARTERLY OF MECHANICS 2006年 第02期
- 具有線性不等式約束非線性規劃問題的降維演算法 Descending Dimension Algorithm of Nolinear Programming Problem with Linear Inequality Constraints 作者:楊懿,張守貴, 期刊-核心期刊 重慶大學學報(自然科學版)JOURNAL OF CHONGQING UNIVERSITY(NATURAL SCIENCE EDITION) 2007年 第10期
- 改進DNA遺傳演算法求解非線性多約束規劃研究 Refined DNA-GA for solving nonlinear multi-constrained programming 作者:王淑超,王乘, 期刊-核心期刊 華中科技大學學報(自然科學版)JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURE SCIENCE EDITION) 2004年 第06期
- 改進DNA遺傳演算法求解非線性多約束規劃研究 Refined DNA-GA for solving nonlinear multi-constrained programming 作者:王淑超,王乘, 期刊-核心期刊 華中科技大學學報(自然科學版)JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURE SCIENCE EDITION) 2004年 第06期
- 序列無約束極小化技術和遺傳演算法在非線性規劃中的應用 On the Application of SUMT and GA to Solving Constrained Nonlinear Programming Problem 作者:劉道建,黃天民, 期刊 邵陽高等專科學校學報JOURNAL OF SHAOYANG COLLEGE 2001年 第04期
- 序列無約束極小化技術和遺傳演算法在非線性規劃中的應用 On the Application of SUMT and GA to Solving Constrained Nonlinear Programming Problem 作者:劉道建,黃天民, 期刊 邵陽高等專科學校學報JOURNAL OF SHAOYANG COLLEGE 2001年 第04期

MATLAB中用遺傳演算法求解約束非線性規劃問題
Solution of optimization with nonliear constraints programming by genetic alogorithm in MATLAB

<<哈爾濱商業大學學報(自然科學版)>>2006年 第22卷 第04期
作者: 王勇
約束非線性規劃問題的求解往往是運籌學中的NP問題,利用MATLAB中的遺傳演算法工具箱中的函數方便、快捷的求得了兩個實例的最優解,進一步指出了遺傳演算法與傳統的最優化演算法的區別.
關鍵詞: 遺傳演算法, 約束非線性規劃, MATLAB, | 全部關鍵詞

最優化技術方法及MATLAB的實現
編 號: 86755
著 作 者: 16.00
出 版 社: 化學工業出版社
書 號: 9787502563837
出版日期: 2005-1-1

內容包括線性規劃與MATLAB的實現,即非線性規劃、整數規劃、動態規劃、多目標規劃與MATLAB的實現及圖與網路分析技術等。為方便讀者學習,本書安排了大量最優化方法在工程中的應用實例,根據需要逐個編寫了解決這些問題的相應數學模型,應用MATLAB程序,通過簡潔的運算給出了較為復雜問題的解。
本書可作為最優化技術方法或MATLAB優化工具箱應用的入門教材,供高職高專或本科院校管理、經濟類專業的師生使用,也可供廣大愛好者學習參考。
隨著計算機科學的發展和應用,應用最優化方法解決問題的領域在不斷擴大,最優化的理論和方法也得到普及和發展。線性規劃、非線性規劃、整數規劃、動態規劃和多目標規劃以及圖與網路技術作為最優化方法的主要內容已經成為工程技術人員和經濟管理人員所必備的基礎知識,目前,最優化方法課程已經開始作為高等院校的普及課程。
在「高等數學」中學習的極值理論、線性代數、向量、矩陣、泰勒公式等概念為學習「最優化方法」奠定了基礎。在「最優化方法」中,這些知識的重要價值將在工程應用中得到充分體現。
在最優化方法的應用過程中,要將所學知識直接應用於解決實際問題,中間往往還有一段距離。有時,面對需要建立的復雜數學模型,尤其是繁復的數學計算問題,往往難以入手,因此,人們總是希望能夠找到具有通用性和廣泛性的方法,用類似於日常使用計算器的手段,解決較為復雜的計算問題。在本書中,將「最優化方法」與「MATLAB工具箱」連接起來學習,就能夠在一定程度上彌補這一缺陷。
MATLAB是一個很不錯的計算軟體,它給數學計算帶來了許多的便利和可能性,它提供了幾十個工具箱,利用這些工具箱,可以解決不同領域的許多問題。
本書簡明扼要、敘述清楚、文字流暢,既可作為工程學科、管理及經濟學科的專、本科學生的「最優化方法」教材,也可作為應用「MATLAB工具箱」入門參考教材使用。
本書是編者根據多年的教學經驗,為適應新的教學需要而編寫的,所有工程應用實例均經過了MATLAB6

⑺ 數學建模MATLAB工具箱是什麼怎麼用

Matlab工具箱已經成為一個系列產品,Matlab主工具箱和各種工具箱(toolbox )。
工具箱簡介
1功能型工具箱 —— 通用型
功能型工具箱主要用來擴充Matlab的數值計算、符號運算功能、圖形建模模擬功能、文字處理功能以及與硬體實時交互功能,能夠用於多種學科。
2領域型工具箱 —— 專用型
領域型工具箱是學科專用工具箱,其專業性很強,比如控制系統工具箱( Control System Toolbox);信號處理工具箱(Signal Processing Toolbox);財政金融工具箱( Financial Toolbox)等等。只適用於本專業。

3
Matlab常用工具箱
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系統工具箱
Communication Toolbox——通訊工具箱
Financial Toolbox——財政金融工具箱
System Identification Toolbox——系統辨識工具箱
Fuzzy Logic Toolbox——模糊邏輯工具箱
Bioinformatics Toolbox——生物分析工具箱
Image Processing Toolbox——圖象處理工具箱
Database Toolbox——資料庫工具箱
Model predictive Control Toolbox——模型預測控制工具箱
Neural Network Toolbox——神經網路工具箱
Optimization Toolbox——優化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——魯棒控制工具箱
Signal Processing Toolbox——信號處理工具箱
Spline Toolbox——樣條工具箱
Statistics Toolbox——統計工具箱
Symbolic Math Toolbox——符號數學工具箱
Simulink Toolbox——動態模擬工具箱
Virtual Reality Toolbox——虛擬現實工具箱
Wavelet Toolbox——小波工具箱
等等…….
而且每個新出的版本都在增加、更新完善。

⑻ 在matlab中,使用優化工具箱fmincon,計算一個優化問題,但報錯了,求大神講解

目標函數(Objective function)應該設置為@(x)-x(1)*x(2)*x(3),像你現在的目標函數是需要三個輸入參數的,而fmincon調用它的時候只會提供一個參數,所以導致輸入參數不足。

另外,像這種簡單的優化問題,其實也可以直接用命令行調用:

fmincon(@(x)-x(1)*x(2)*x(3),[10 10 10],[-1 -2 -2;1 2 2],[0 72])

⑼ MATLAB里的Toolboxes怎麼使用急求高手指點!!!

MATLAB工具箱介紹
有三十多個工具箱大致可分為兩類:功能型工具箱和領域型工具箱。
功能型工具箱主要用來擴充MATLAB的符號計算功能、圖形建模模擬功能、文字處理功能以及與硬體實時交互功能,能用於多種學科。
領域型工具箱是專業性很強的。如圖像處理工具箱(Image Processing Toolbox)、控制工具箱(Control Toolbox)、信號處理工具箱(Signal Processing Toolbox)等。下面,將MATLAB工具箱內所包含的主要內容做簡要介紹:

1) 圖像處理工具箱(Image Processing Toolbox)。
* 二維濾波器設計和濾波
* 圖像恢復增強
* 色彩、集合及形態操作
* 二維變換
* 圖像分析和統計
可由結構圖直接生成可應用的C語言源代碼。
2)控制系統工具箱(Control System Toolbox)。
魯連續系統設計和離散系統設計
* 狀態空間和傳遞函數
* 模型轉換
* 頻域響應:Bode圖、Nyquist圖、Nichols圖
* 時域響應:沖擊響應、階躍響應、斜波響應等
* 根軌跡、極點配置、LQG
3)財政金融工具箱(FinancialTooLbox)。
* 成本、利潤分析,市場靈敏度分析
* 業務量分析及優化
* 偏差分析
* 資金流量估算
* 財務報表
4)頻率域系統辨識工具箱(Frequency Domain System ldentification Toolbox
* 辨識具有未知延遲的連續和離散系統
* 計算幅值/相位、零點/極點的置信區間
* 設計周期激勵信號、最小峰值、最優能量諾等
5)模糊邏輯工具箱(Fuzzy Logic Toolbox)。
* 友好的交互設計界面
* 自適應神經—模糊學習、聚類以及Sugeno推理
* 支持SIMULINK動態模擬
* 可生成C語言源代碼用於實時應用
(6)高階譜分析工具箱(Higher—Order SpectralAnalysis Toolbox
* 高階譜估計
* 信號中非線性特徵的檢測和刻畫
* 延時估計
* 幅值和相位重構
* 陣列信號處理
* 諧波重構
(7) 通訊工具箱(Communication Toolbox)。
令提供100多個函數和150多個SIMULINK模塊用於通訊系統的模擬和分析
——信號編碼
——調制解調
——濾波器和均衡器設計
——通道模型
——同步
(8)線性矩陣不等式控制工具箱(LMI Control Toolbox)。
* LMI的基本用途
* 基於GUI的LMI編輯器
* LMI問題的有效解法
* LMI問題解決方案
(9)模型預測控制工具箱(ModelPredictive Control Toolbox
* 建模、辨識及驗證
* 支持MISO模型和MIMO模型
* 階躍響應和狀態空間模型

(10)u分析與綜合工具箱(u-Analysis and Synthesis Toolbox)
* u分析與綜合
* H2和H無窮大最優綜合
* 模型降階
* 連續和離散系統
* u分析與綜合理論

(11)神經網路工具箱(Neursl Network Toolbox)。
* BP,Hopfield,Kohonen、自組織、徑向基函數等網路
* 競爭、線性、Sigmoidal等傳遞函數
* 前饋、遞歸等網路結構
* 性能分析及應用
(12)優化工具箱(Optimization Toolbox)。
* 線性規劃和二次規劃
* 求函數的最大值和最小位
* 多目標優化
* 約束條件下的優化
* 非線性方程求解
(13)偏微分方程工具箱(Partial DifferentialEquation Toolbox)。
* 二維偏微分方程的圖形處理
* 幾何表示
* 自適應曲面繪制,
* 有限元方法
(14)魯棒控制工具箱(Robust Control Toolbox)。
* LQG/LTR最優綜合
* H2和H無窮大最優綜合
* 奇異值模型降階
* 譜分解和建模
(15)信號處理工具箱(signal Processing Toolbox)
* 數字和模擬濾波器設計、應用及模擬
* 譜分析和估計
* FFT,DCT等變換
* 參數化模型
(16)樣條工具箱(SPline Toolbox)。
* 分段多項式和B樣條
* 樣條的構造
* 曲線擬合及平滑
* 函數微分、積分
(17)統計工具箱(Statistics Toolbox)。
* 概率分布和隨機數生成
* 多變數分析
* 回歸分析
* 主元分析
* 假設檢驗
(18)符號數學工具箱(Symbolic Math Toolbox)。
* 符號表達式和符號矩陣的創建
* 符號微積分、線性代數、方程求解
* 因式分解、展開和簡化
* 符號函數的二維圖形
* 圖形化函數計算器
(19)系統辨識工具箱(SystEm Identification Toolbox)
* 狀態空間和傳遞函數模型
* 模型驗證
* MA,AR,ARMA等
* 基於模型的信號處理
* 譜分析
(20)小波工具箱(Wavelet Toolbox)。
* 基於小波的分析和綜合
* 圖形界面和命令行介面
* 連續和離散小波變換及小波包
* 一維、二維小波
* 自適應去噪和壓縮

閱讀全文

與matlab優化工具箱用法相關的資料

熱點內容
閥門電動開關怎麼接 瀏覽:794
電動工具需要產品認證 瀏覽:840
全國最大傢具五金批發市場 瀏覽:756
離心冷水機用什麼製冷劑 瀏覽:918
超聲波清洗為什麼水發熱 瀏覽:311
測量眼睛內陷用什麼儀器 瀏覽:66
gps工具箱app 瀏覽:173
雙列圓錐滾柱軸承內孔最小是多少 瀏覽:774
壓胎檢測裝置在哪 瀏覽:531
設備簽什麼合同 瀏覽:628
電腦主播整套設備多少錢 瀏覽:291
軸承如何保證潤滑 瀏覽:705
神農飼料機械設備有限公司怎麼樣 瀏覽:108
官方雙列軸承品牌如何選擇 瀏覽:745
氣缸側面的閥門干什麼用 瀏覽:289
家裡智能設備太多如何統一管理 瀏覽:235
深圳市埃塔電子設備有限公司怎麼樣 瀏覽:563
鑄造一般需要掌握什麼 瀏覽:96
什麼時間清洗暖氣閥門最好 瀏覽:857
除塵管道閥門選用 瀏覽:804