『壹』 粒子群優化演算法(PSO)的matlab運行程序~~謝謝大家啦!
%不知道你具體的問題是什麼,下面是一個最基本的pso演算法解決函數極值問題,如果是一些大型的問題,需要對速度、慣性常數、和自適應變異做進一步優化,希望對你有幫助
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
%下面是主程序
%% 清空環境
clc
clear
%% 參數初始化
%粒子群演算法中的兩個參數
c1 = 1.49445;
c2 = 1.49445;
maxgen=200; % 進化次數
sizepop=20; %種群規模
Vmax=1;%速度限制
Vmin=-1;
popmax=5;%種群限制
popmin=-5;
%% 產生初始粒子和速度
for i=1:sizepop
%隨機產生一個種群
pop(i,:)=5*rands(1,2); %初始種群
V(i,:)=rands(1,2); %初始化速度
%計算適應度
fitness(i)=fun(pop(i,:)); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %個體最佳
fitnessgbest=fitness; %個體最佳適應度值
fitnesszbest=bestfitness; %全局最佳適應度值
%% 迭代尋優
for i=1:maxgen
for j=1:sizepop
%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;
%種群更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;
%自適應變異(避免粒子群演算法陷入局部最優)
if rand>0.8
k=ceil(2*rand);%ceil朝正無窮大方向取整
pop(j,k)=rand;
end
%適應度值
fitness(j)=fun(pop(j,:));
%個體最優更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
%群體最優更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i)=fitnesszbest;
end
%% 結果分析
plot(yy)
title(['適應度曲線 ' '終止代數=' num2str(maxgen)]);
xlabel('進化代數');ylabel('適應度');
『貳』 我利用粒子群演算法工具箱求解最優值時陷入了局部最優該如何解決
粒子群陷入局部最優在所難免,建議可以採取加大權重因子的方法,或者一些改進的粒子群演算法會提出對收斂的種群進行干擾,從而產生新的種群,另外可以採用量子粒子群演算法,在局部最優問題上解決的還算可以
『叄』 粒子群演算法工具箱怎麼用
粒子群演算法的程序搞不到,工具箱下到一個沒有一點注釋之類的,我看不大懂,不會用,能否說說工具箱怎麼用,要粒子群標准演算法的程序。改進演算法的程序更好。很感激。郵箱[email protected]
『肆』 粒子群演算法 matlab 工具箱 在哪調用 還是沒有現成的需要自己下載
http://www.mathworks.com/matlabcentral/fileexchange/7506
這個基復本上快算是官方的制了。粒子群演算法工具。注冊以後就可以下載了。
『伍』 什麼是粒子群演算法
粒子群演算法,也稱粒子群優化演算法(Partical Swarm Optimization),縮寫為 PSO, 是近年來發展起來的一種新的進化演算法((Evolu2tionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和遺傳演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。 PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。 PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 粒子公式 在找到這兩個最優值時,粒子根據如下的公式來更新自己的速度和新的位置: v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, w是慣性權重,persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2. 程序的偽代碼如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax
『陸』 MATLAB粒子群演算法初始化粒子群函數
先運行一下Matlab的例子看看能否正常運行,或者到較高版本上去運行一下代碼。
『柒』 求帶約束條件的粒子群演算法的MATLAB編程
恩
這個比較簡單,可以很容易的做出來
Matlab中提供了兩種方法,數值和解析
1.數值解法使用filter函數
對於遞推公式
a(1)*y(n)+a(2)*y(n-1)
+
...
+
a(na+1)*y(n-na)
=
b(1)*x(n)
+
b(2)*x(n-1)
+
...
+
b(nb+1)*x(n-nb)
我們可以變成如下
filter(b,a,x,zi)其中a和b就是上面的系數,x是需要計算的n,zi是初值
由於使用filter函數需要信號基礎
我們這里不詳細說明
2.解析解法就是Z變換
%首先我們要改變遞推公式如下,否則沒法的到正確結果
%y(n+1)=2y(n),y(0)=-2
L=ztrans(sym('y(n+1)'));%等式左邊的Z變換
R=ztrans(sym('2*y(n)'));%等式右邊的Z變換
S=L-R
%將初值y(0)帶入,我們可以根據y(-1)推出y(0)=-2
%令Y=ztrans(y(n),n,z),y0=y(0),求解出S中的y(n)的Z變換結果
y0=-2;
s=subs(S,{'ztrans(y(n),n,z)','y(0)'},{'Y',y0});
%求解出y(n)的Z變換結果
Y=solve(s,'Y')
%對Y進行反Z變化
iztrans(Y)
S
=
z*ztrans(y(n),n,z)-y(0)*z-2*ztrans(y(n),n,z)
Y
=
-2*z/(z-2)
ans
=
-2*2^n