❶ 五大力學!!!都包括什麼
機械學的五大力學分別是:理論力學,材料力學,彈塑性力學,流體力學和液壓傳動力學。
理論力學通常分為三個部分:靜力學、運動學與動力學。靜力學研究作用於物體上的力系的簡化理論及力系平衡條件;運動學只從幾何角度研究物體機械運動特性而不涉及物體的受力;動力學則研究物體機械運動與受力的關系。動力學是理論力學的核心內容。
材料力學研究材料在各種力和力矩的作用下所產生的應力和應變,以及剛度和強度的問題。通常是機械工程、土木工程和建築工程以及相關專業的大學生必須修讀的課程,通常在修讀材料力學之前,會要求先修讀應用力學。
機械工程的工作對象是動態的機械,它的工作情況會發生很大的變化。這種變化有時是隨機而不可預見;實際應用的材料也不完全均勻,可能存有各種缺陷;加工精度有一定的偏差,等等。
與以靜態結構為工作對象的土木工程相比,機械工程中各種問題更難以用理論精確解決。因此,早期的機械工程只運用簡單的理論概念,結合實踐經驗進行工作。設計計算多依靠經驗公式;為保證安全,都偏於保守,結果製成的機械笨重而龐大,成本高,生產率低,能量消耗很大。
從18世紀起,新理論的不斷誕生,以及數學方法的發展,使設計計算的精確度不斷的提高。進入20世紀,出現各種實驗應力分析方法,人們已能用實驗方法測出模型和實物上各部位的應力。
❷ 材料力學是專門研究物體機械運動一般規律的科學是對的嗎
要看考生對哪方面的知識理解的更深刻,理論力學偏理解,材料力學偏記憶。一般是材料力學。
理論力學(theoretical mechanics)是研究物體機械運動的基本規律的學科。力學的一個分支。它是一般力學各分支學科的基礎。理論力學通常分為三個部分:靜力學、運動學與動力學。靜力學研究作用於物體上的力系的簡化理論及力系平衡條件;運動學只從幾何角度研究物體機械運動特性而不涉及物體的受力;動力學則研究物體機械運動與受力的關系。動力學是理論力學的核心內容。理論力學的研究方法是從一些由經驗或實驗歸納出的反映客觀規律的基本公理或定律出發,經過數學演繹得出物體機械運動在一般情況下的規律及具體問題中的特徵。理論力學中的物體主要指質點、剛體及剛體系,當物體的變形不能忽略時,則成為變形體力學(如材料力學、彈性力學等)的討論對象。靜力學與動力學是工程力學的主要部分。
材料力學(mechanics of materials)是研究材料在各種外力作用下產生的應變、應力、強度、剛度、穩定和導致各種材料破壞的極限。一般是機械工程和土木工程以及相關專業的大學生必須修讀的課程,學習材料力學一般要求學生先修高等數學和理論力學。材料力學與理論力學、結構力學並稱三大力學。材料力學的研究對象主要是棒狀材料,如桿、梁、軸等。對於桁架結構的問題在結構力學中討論,板殼結構的問題在彈性力學中討論。
❸ 的分支叫做力學,那麼什麼是研究物體機械運動的學科
工程力學中運動學部分就是研究機械運動的學科。
❹ 牛頓力學中的研究對象
不是這樣的,如果是這樣,把地球看成一個整體,就是你所說的物體,那麼它所做的公轉自轉就可用牛頓力學所解,然而在實際上卻不可以
❺ 機械運動 研究對象
就是需要我們來分析的一個物理過程、系統或現象
❻ 物理研究的對象主要是什麼
力學研究來機械運動的源基本規律,電磁學研究電磁作用的基本規律,熱學研究熱運動的基本規律,幾何光學研究光的直線傳播的基本規律,波動光學研究光的波動規律,近代物理研究微觀粒子的高速運動(和光速相比)規律。
因此,物理研究的對象主要是研究物質的基本結構,物質之間的相互作用以及它們的最普遍,最基本的運動形式和規律,認識物質世界的基本屬性.
❼ 經典力學的最基本內容有哪些 物理學的知識
動力學:研究物體在力的作用下處於非平衡狀態,之間能量啊說什麼的轉換靜力學:靜力學是力學的一個分支,它主要研究物體在力的作用下處於平衡的規律,以及如何建
立各種力系的平衡條件.
平衡是物體機械運動的特殊形式,嚴格地說,物體相對於慣性參照系處於靜止或作勻速
直線運動的狀態,即加速度為零的狀態都稱為平衡.對於一般工程問題,平衡狀態是以
地球為參照系確定的.靜力學還研究力系的簡化和物體受力分析的基本方法.
❽ 物理分為經典力學和什麼英文名稱是什麼分類依據是什麼(最好是英文)
1. 根據物理學科發展進程(according to the course of development in physics),可分為:
經典物理學(classical physics):19世紀末以經典電磁理論的建立為標志,經典物理學的發展達到頂峰,經典物理學幾乎可以解釋一切當時已知的物理問題。即使是在現在,我們遇到的大部分物理問題也都還可以用經典物理學解決,特別是化學,生物學等領域內,存在著大量的經典近似。
現代物理學 (modern physics):現代物理學通常是指20世紀初開始發展起來的物理學,包括相對論,量子力學,原子和核物理學,粒子物理學等。現代物理學的出現源於當時新的實驗事實的出現,最重要的要數邁克耳遜—莫雷試驗和黑體輻射實驗,物理學產生空前危機。以太被否定,原子模型建立,光速不變原理提出,量子力學建立等,標志著現代物理學的建立。今天計算機,激光,半導體等現代科技的產生概源於現代物理學。
2. 根據研究的物質運動形態和具體研究對象(according to material movement form of research &the specific research objects ),可分為:
●力學(Mechanics)研究物體機械運動的基本規律及關於時空相對性的規律
●熱學(Thermodynamics)研究物質熱運動的統計規律及其宏觀表現
●電磁學(Electromagnetics)研究電磁現象,物質的電磁運動規律及電磁輻射等規律
●光學(optics)研究光的本性、光的傳播和光與物質相互作用的基礎學科
●原子物理學(atomic physics)研究原子的組成、排布及其運動、轉化規律的科學
此外,物理學分支的細化還衍生出許許多多不盡統一的新興學科,例如:
粒子物理學、原子核物理學、固體物理學(凝聚態物理學)、激光物理學、等離子體物理學、地球物理學、大氣物理學(氣象學)、天體物理學(天文學)、海洋物理學(海洋學)等等。
3. 根據研究方法的側重點(according to the emphasis of research methods),可分為:
理論物理學(計算物理學)和實驗物理學(技術物理學)。
寫了些補充的資料``希望能讓你更明白```
❾ 什麼是經典力學
經典力學
經典力學的基本定律是牛頓運動定律或與牛頓定律有關且等價的其他力學原理,它是20世紀以前的力學,有兩個基本假定:其一是假定時間和空間是絕對的,長度和時間間隔的測量與觀測者的運動無關,物質間相互作用的傳遞是瞬時到達的;其二是一切可觀測的物理量在原則上可以無限精確地加以測定。20世紀以來,由於物理學的發展,經典力學的局限性暴露出來。如第一個假定,實際上只適用於與光速相比低速運動的情況。在高速運動情況下,時間和長度不能再認為與觀測者的運動無關。第二個假定只適用於宏觀物體。在微觀系統中,所有物理量在原則上不可能同時被精確測定。因此經典力學的定律一般只是宏觀物體低速運動時的近似定律。
力學是物理學中發展較早的一個分支。古希臘著名的哲學家亞里士多德曾對「力和運動」提出過許多觀點,他的著作一度被當作古代世界學術的網路全書,在西方有著極大的影響,以致他的很多錯誤觀點在長達2000年的歲月中被大多數人所接受。
16世紀以後,人們開始通過科學實驗,對力學現象進行准確的研究。許多物理學家、天文學家如哥白尼、布魯諾、伽利略、開普勒等,做了很多艱巨的工作,力學逐漸擺脫傳統觀念的束縛,有了很大的進展。
英國科學家牛頓在前人研究和實踐的基礎上,經過長期的實驗觀測、數學計算和深入思考,提出了力學三大定律和萬有引力定律,把天體力學和地球上物體的力學統一起來,建立了系統的經典力學理論。其主要內容是:
牛頓第一定律:一切物體沒有受外力作用時,總保持勻速直線狀態或靜止狀態,直到有外力迫使它改變這種狀態為止。
牛頓第二定律:物體的加速度與所受外力成正比,與物體的質量成反比,加速度的方向與外力的方向相同。公式:F(合)=ma
牛頓第三定律:兩個物體之間的作用力與反作用力大小相等,方向相反,並且在同一條直線上。
萬有引力定律:自然界中任何兩個物體都相互吸引,引力的大小與物體(質點)的質量乘積成正比,與它們之間距離的平方正反比。
現代力學推翻了絕對空間的概念:即在不同空間發生的事件是絕然不同的。例如,靜掛在移動的火車車廂內的時鍾,對於站在車廂外的觀察者來說是呈移動狀態的。但是,經典力學仍然確認時間是絕對不變的。
由伽利略和牛頓等人發展出來的力學,著重於分析位移、速度、加速度、力等等矢量間的關系,又稱為矢量力學。它是工程和日常生活中最常用的表述方式,但並不是唯一的表述方式:拉格朗日、哈密頓、卡爾·雅可比等發展了經典力學的新的表述形式,即所謂分析力學。分析力學所建立的框架是現代物理的基礎,如量子場論、廣義相對論、量子引力等。
微分幾何的發展為經典力學注入了蒸蒸日盛的生命力,是研究現代經典力學的主要數學工具。在日常經驗范圍中,採用經典力學可以計算出精確的結果。但是,在接近光速的高速度或強大引力場的系統中,經典力學已被相對論力學取代;在小距離尺度系統中又被量子力學取代;在同時具有上述兩種特性的系統中則被相對論性量子場論取代。雖然如此,經典力學仍舊是非常有用的。因為:
它比上述理論簡單且易於應用。
它在許多場合非常准確。經典力學可用於描述人體尺寸物體的運動(例如陀螺和棒球),許多天體(如行星和星系)的運動,以及一些微尺度物體(如有機分子)。
雖然經典力學和其他「經典」理論(如經典電磁學和熱力學)大致相容,在十九世紀末,還是發現出有些只有現代物理才能解釋的不一致性。特別是,經典非相對論電動力學預言光速在以太內是常數,經典力學無法解釋這預測,並導致了狹義相對論的發展。經典力學和經典熱力學的結合又導出吉布斯佯謬(熵無定義)和紫外災難(黑體發射無窮能量)。為解決這些問題的努力造成了量子力學的發展。
[編輯本段]理論的表述
經典力學有許多不同的理論表述方式:
牛頓力學(矢量力學)的表述方式。
拉格朗日力學的表述方式。
哈密頓力學的表述方式。
以下介紹經典力學的幾個基本概念。為簡單起見,經典力學常使用質點來模擬實際物體。質點的尺寸大小可以被忽略。質點的運動可以用一些參數描述:位移、質量、和作用在其上的力。
實際而言,經典力學可以描述的物體總是具有非零的尺寸。(真正的質點,例如電子, 必須用量子力學才能正確描述)。非零尺寸的物體比虛構的質點有更復雜的行為,這是因為自由度的增加 - 例如,棒球在移動的時候可以旋轉。雖然如此,質點的概念也可以用來研究這種物體,因為這種物體可以被認知為由大量質點組成的復合物。如果復合物的尺寸極小於所研究問題的距離尺寸,則可以推斷復合物的質心與質點的行為相似。因此,使用質點也適合於研究這類問題。
[編輯本段]歷史
古希臘的哲學家,包括亞里士多德在內,可能是最早提出「萬有之本,必涵其因」論點,以及用抽象的哲理嘗試敲解大自然奧秘的思想家。當然,對於現代讀者而言,許多仍舊存留下來的思想是蠻有道理的,但並沒有無懈可擊的數學理論與對照實驗來闡明跟證實。而這些方法乃現代科學,如經典力學,能形成的最基本因素。
開普勒是第一位要求用因果關系來詮釋星體運動的科學家。他從第谷·布拉赫對火星的天文觀測資料里發現了火星公轉的軌道是橢圓形的。這與中世紀思維的切割大約發生在西元1600年。差不多於同時,伽利略用抽象的數學定律來解釋質點運動。傳說他曾經做過一個著名的實驗:從比薩斜塔扔下兩個不同質量的球來試驗它們是否同時落地。雖然這傳說很可能不實,但他確實做過斜面上滾球的數量實驗;他的加速運動論顯然是由這些結果推導出的,而且成為了經典力學上的基石。
牛頓在他的巨著《自然哲學的數學原理》里發表了三條牛頓運動定律;慣性定律,加速度定律,和作用與反作用定律。他示範了這些定律能支配著普通物體與天體的運動。特別值得一提的是,他研究出開普勒定律在理論方面的詳解。牛頓先前已創發的微積分是研究經典力學所必備的數學工具。
牛頓和大多數那個年代的同仁,除了惠更斯著名的例外,都認為經典力學應可以詮釋所有大自然顯示的現象,包括用其分支,幾何光學,來解釋光波。甚至於當他發現了牛頓環(一個光波干涉現象),牛頓仍然使用自己的光微粒學說來解釋。
十九世紀後期,尖端的理論與實驗挖掘出許多撲碩迷離的難題。經典力學與熱力學的連結導至出經典統計力學的吉布斯佯謬(熵混合不連續特性)。在原子物理的領域,原子輻射呈現線狀光譜,而不是連續光譜。眾位大師盡心竭力研究這些難題,引導發展出現代的量子力學。同樣的,因為經典電磁學和經典力學在座標變換時的互相矛盾,終就創發出驚世的相對論。
自二十世紀末後,不再能虎山獨行的經典力學,已與經典電磁學被牢牢的嵌入相對論和量子力學裡面,成為在非相對論性和非量子力學性的極限,研究質點的學問
[編輯本段]有效范圍
許多經典力學的分支乃是更精準理論的簡化或近似。兩個最精準的例子是廣義相對論和相對論性統計力學。幾何光學乃量子光學的近似,並沒有比它更優秀的理論了。
[編輯本段]經典力學的完善:
牛頓力學的輝煌成就,決定著後來物理學家的思想、研究和實踐的方向。《原理》採用的是歐幾里得幾何學的表述方式,處理的是質點力學問題,以後牛頓力學被推廣到流體和剛體,並逐漸發展成嚴密的解析形式。
1736年,歐拉寫成了《力學》一書,把牛頓的質點力學推廣到剛體的場合,引入了慣量的概念,論述了剛體運動的問題 。
牛頓在他的巨著《自然哲學的數學原理》里發表了三條牛頓運動定律;慣性定律,加速度定律,和作用與反作用定律。他示範了這些定律能支配著普通物體與天體的運動。特別值得一提的是,他研究出開普勒定律在理論方面的詳解。牛頓先前已創發的微積分是研究經典力學所必備的數學工具。;1738年,伯努利出版了《流體力學》,解決了流體運動問題;達朗貝爾進而於1743年出版了《力學研究》,把動力學問題化為靜力學來處理,提出了所謂達朗貝爾原理;莫培督接著在1744年提出了最小作用原理。
把解析方法進一步貫徹到底的是拉格朗日1788年的《分析力學》和拉普拉斯的《天體力學》(在1799~1825年間完成)。前者雖說是一本力學書,可是沒有畫一張圖,自始至終採用的都是純粹的解析法,因而十分出名,運用廣義坐標的拉格朗日方程就在其中。後者專門用牛頓力學處理天體問題,解決了各種各樣的疑難。《分析力學》和《天體力學》可以說是經典力學的頂峰。 在分析力學方面做出傑出貢獻的還有其他一批人,他們使經典力學在邏輯上和形式上更加令人滿意。就這樣,經過牛頓的精心構造和後人的著意雕飾,到了十八世紀初期,經典力學這一宏偉建築巍然矗立,無論外部造型之雅緻,還是內藏珍品之精美,在當時的科學建築群中都是無與倫比的。經典力學正確地反映了弱引力情況下、低速宏觀物體運動的客觀規律,使人類對物質運動的認識大大地向前跨進了一步。二十世紀末後,不再能虎山獨行的經典力學,已與經典電磁學被牢牢的嵌入相對論和量子力學裡面,成為在非相對論性和非量子力學性的極限,研究質點的學問。
[編輯本段]相關補充:
經典力學是研究宏觀物體做低速機械運動的現象和規律的學科。宏觀是相對於原子等微觀粒子而言的;低速是相對於光速而言的。物體的空間位置隨時間變化稱為機械運動。人們日常生活直接接觸到的並首先加以研究的都是宏觀低速的機械運動。
自遠古以來,由於農業生產需要確定季節,人們就進行天文觀察。16世紀後期,伽利略的望遠鏡人們對行星繞太陽的運動進行了詳細、精密的觀察。17世紀開普勒從這些觀察結果中總結出了行星繞日運動的三條經驗規律。差不多在同一時期,伽利略進行了落體和拋物體的實驗研究,從而提出關於機械運動現象的初步理論。
牛頓深入研究了這些經驗規律和初步的現象性理論,發現了宏觀低速機械運動的基本規律,為經典力學奠定了基礎。亞當斯根據對天王星的詳細天文觀察,並根據牛頓的理論,預言了海王星的存在,以後果然在天文觀察中發現了海王星。於是牛頓所提出的力學定律和萬有引力定律被普遍接受了。
經典力學中的基本物理量是質點的空間坐標和動量:一個力學系統在某一時刻的狀態,由它的某一個質點在這一時刻的空間坐標和動量表示。對於一個不受外界影響,也不影響外界,不包含其他運動形式(如熱運動、電磁運動等)的力學系統來說,它的總機械能就是每一個質點的空間坐標和動量的函數,其狀態隨時間的變化由總能量決定。
在經典力學中,力學系統的總能量和總動量有特別重要的意義。物理學的發展表明,任何一個孤立的物理系統,無論怎樣變化,其總能量和總動量數值是不變的。這種守恆性質的適用范圍已經遠遠超出了經典力學的范圍,現在還沒有發現它們的局限性。
早在19世紀,經典力學就已經成為物理學中十分成熟的分支學科,它包含了豐富的內容。例如:質點力學、剛體力學、分析力學、彈性力學、塑性力學、流體力學等。經典力學的應用范圍,涉及到能源、航空、航天、機械、建築、水利、礦山建設直到安全防護等各個領域。當然,工程技術問題常常是綜合性的問題,還需要許多學科進行綜合研究,才能完全解決。紙錐揚聲器的振動模式
機械運動中,很普遍的一種運動形式就是振動和波動。聲學就是研究這種運動的產生、傳播、轉化和吸收的分支學科。人們通過聲波傳遞信息,有許多物體不易為光波和電磁波透過,卻能為聲波透過;頻率非常低的聲波能在大氣和海洋中傳播到遙遠的地方,因此能迅速傳遞地球上任何地方發生的地震、火山爆發或核爆炸的信息;頻率很高的聲波和聲表面波已經用於固體的研究、微波技術、醫療診斷等領域;非常強的聲波已經用於工業加工等。
❿ 相對論和經典力學的最主要的區別是什麼,它解決了哪些經典力學所無法解答的問題
隨著人們對宇宙認識的深入,牛頓所提出物理學定律越來越漏洞百出。牛頓的物理學定律只內適用於低速、宏觀容、弱引力。愛因斯坦的狹義相對論提出,物體的質量不是不變的。質量和運動是相關的,隨著速度接近光速,質量也在增加。牛頓的物理學定律就不適用了,因此,把牛頓的物理學定律稱為經典物理學定律。經典物理學不適用於高速(如0.5倍光速)微觀(如電子運動)強引力(黑洞)的運動。