A. 紅外光譜儀的種類和工作原理是什麼
樓主,您好。紅外光譜儀的種類有: ①棱鏡和光柵光譜儀。屬於色散型,它的單色器為棱鏡或光柵,屬單通道測量。②傅里葉變換紅外光譜儀。它是非色散型的,其核心部分是一台雙光束干涉儀。當儀器中的動鏡移動時,經過干涉儀的兩束相干光間的光程差就改變,探測器所測得的光強也隨之變化,從而得到干涉圖。經過傅里葉變換的數學運算後,就可得到入射光的光譜。這種儀器的優點:①多通道測量,使信噪比提高。 ②光通量高,提高了儀器的靈敏度。③波數值的精確度可達0.01厘米-1。④增加動鏡移動距離,可使分辨本領提高。⑤工作波段可從可見區延伸到毫米區,可以實現遠紅外光譜的測定。
近紅外光譜儀種類繁多,根據不用的角度有多種分類方法。
從應用的角度分類,可以分為在線過程監測儀器、專用儀器和通用儀器。從儀器獲得的光譜信息來看,有隻測定幾個波長的專用儀器,也有可以測定整個近紅外譜區的研究型儀器;有的專用於測定短波段的近紅外光譜,也有的適用於測定長波段的近紅外光譜。較為常用的分類模式是依據儀器的分光形式進行的分類,可分為濾光片型、色散型(光柵、棱鏡)、傅里葉變換型等類型。下面分別加以敘述。
二、濾光片型近紅外光譜儀器:
濾光片型近紅外光譜儀器以濾光片作為分光系統,即採用濾光片作為單色光器件。濾光片型近紅外光譜儀器可分為固定式濾光片和可調式濾光片兩種形式,其中固定濾光片型的儀器時近紅外光譜儀最早的設計形式。
儀器工作時,由光源發出的光通過濾光片後得到一寬頻的單色光,與樣品作用後到達檢測器。
該類型儀器優點是:儀器的體積小,可以作為專用的便攜儀器;製造成本低,適於大面積推廣。
該類型儀器缺點是:單色光的譜帶較寬,波長解析度差;對溫濕度較為敏感;得不到連續光譜;不能對譜圖進行預處理,得到的信息量少。故只能作為較低檔的專用儀器。
三、色散型近紅外光譜儀器:
色散型近紅外光譜儀器的分光元件可以是棱鏡或光柵。為獲得較高解析度,現代色散型儀器中多採用全息光柵作為分光元件,掃描型儀器通過光柵的轉動,使單色光按照波長的高低依次通過樣品,進入檢測器檢測。根據樣品的物態特性,可以選擇不同的測樣器件進行投射或反射分析。
該類型儀器的優點:是使用掃描型近紅外光譜儀可對樣品進行全譜掃描,掃描的重復性和解析度叫濾光片型儀器有很大程度的提高,個別高端的色散型近紅外光譜儀還可以作為研究級的儀器使用。化學計量學在近紅外中的應用時現代近紅外分析的特徵之一。採用全譜分析,可以從近紅外譜圖中提取大量的有用信息;通過合理的計量學方法將光譜數據與訓練集樣品的性質(組成、特性數據)相關聯可得到相應的校正模型;進而預測未知樣品的性質。
該類型儀器的缺點:是光柵或反光鏡的機械軸承長時間連續使用容易磨損,影響波長的精度和重現性;由於機械部件較多,儀器的抗震性能較差;圖譜容易受到雜散光的干擾;掃描速度較慢,擴展性能差。由於使用外部標准樣品校正儀器,其解析度、信噪比等指標雖然比濾光片型儀器有了很大的提高,但與傅里葉型儀器相比仍有質的區別。
四、傅里葉變換型近紅外光譜儀器:
傅里葉變換近紅外分光光度計簡稱為傅里葉變換光譜儀,它利用干涉圖與光譜圖之間的對應關系,通過測量干涉圖並對干涉圖進行傅里葉積分變換的方法來測定和研究近紅外光譜。其基本組成包括五部分:①分析光發生系統,由光源、分束器、樣品等組成,用以產生負載了樣品 信息的分析光;②以傳統的麥克爾遜干涉儀為代表的干涉儀,以及以後的各類改進型干涉儀,其作用是使光源發出的光分為兩束後,造成一定的光程差,用以產生空間(時間)域中表達的分析光,即干涉光;③檢測器,用以檢測干涉光;④采樣系統,通過數模轉換器把檢測器檢測到的干涉光數字化,並導入計算機系統;⑤計算機系統和顯示器,將樣品干涉光函數和光源干涉光函數分別經傅里葉變換為強度俺頻率分布圖,二者的比值即樣品的近紅外圖譜,並在顯示器中顯示。
在傅里葉變換近紅外光譜儀器中,干涉儀是儀器的心臟,它的好壞直接影響到儀器的心梗,因此有必要了解傳統的麥克爾遜干涉儀以及改進後的干涉儀的工作原理。
⑴傳統的麥克爾遜(Michelson)干涉儀:傳統的麥克爾遜干涉儀系統包括兩個互成90度角的平面鏡、光學分束器、光源和檢測器。平面鏡中一個固定不動的為定鏡,一個沿圖示方向平行移動的為動鏡。動鏡在運動過程中應時刻與定鏡保持90度角。為了減小摩擦,防止振動,通常把動鏡固定在空氣軸承上移動。光學分束器具有半透明性質,放於動鏡和定鏡之間並和它們成45度角,使入射的單色光50%透過,50%反射,使得從光源射出的一束光在分束器被分成兩束:反射光A和透射光B。A光束垂直射到定鏡上;在那兒被反射,沿原光路返回分束器;其中一半透過分束器射向檢測器,而另一半則被反射回光源。B光束以相同的方式穿過分束器射到動鏡上;在那兒同樣被反射,沿原光路返回分束器;再被分束器反射,與A光束一樣射向檢測器,而以另一半則透過分束器返回原光路。A、B兩束光在此會合,形成為具有干涉光特性的相干光;當動鏡移動到不同位置時,即能得到不同光程差的干涉光強。
⑵改進的干涉儀:干涉儀是傅里葉光譜儀最重要的部件,它的性能好壞決定了傅里葉光譜儀的質量,在經典的麥克爾遜干涉儀的基礎上,近年來在提高光通量、增加穩定性和抗震性、簡化儀器結構等方面有不少改進。
五、傳統的麥克爾遜干涉儀工作過程中,當動鏡移動時,難免會存在一定程度上的擺動,使得兩個平面鏡互不垂直,導致入射光不能直射入動鏡或反射光線偏離原入射光的方向,從而得不到與入射光平行的反射光,影響干涉光的質量。外界的振動也會產生相同的影響。因此經典的干涉儀除需經十分精確的調整外,還要在使用過程中避免振動,以保持動鏡精確的垂直定鏡,獲得良好的光譜圖。為提高儀器的抗振能力,Bruker公司開發出三維立體平面角鏡干涉儀,採用兩個三維立體平面角鏡作為動鏡,通過安裝在一個雙擺動裝置質量中心處的無摩擦軸承,將兩個立體平面角鏡連接。
三維立體平面角鏡干涉儀的實質是用立體平面角鏡代替了傳統干涉儀兩干臂上的平面反光鏡。由立體角鏡的光學原理可知,當其反射面之間有微小的垂直度誤差及立體角鏡沿軸方向發生較小的擺動時,反射光的方向不會發生改變,仍能夠嚴格地按與入射光線平行的方向射出。由此可以看出,採用三維立體角鏡後,可以有效地消除動鏡在運動過程中因擺動、外部振動或傾斜等因素引起的附加光程差,從而提高了一起的抗振能力。詳情請參考國家標准物質網www.rmhot.com
B. 檢測紅外輻射特性的儀器有哪些
0512紫外光耐候試驗箱82256088/8009劉 紫外線老化試驗機
採用熒光紫外燈為光源,通過模擬自然陽光中的紫外輻射和冷凝,對材料進行加速耐候性試驗,以獲得材料耐
候性的結果。本機用於橡膠、塑膠、塗料、油漆及其製品),經在陽光、濕度、溫度、凝扮迅露等氣候條件的變化下檢
驗有關產品及材料老化現象程度。在短時間內得到變色,退色等情況。符合GB/T14522《機械工業產品用塑料、塗
料、橡膠材料人工加速試驗方法》、GB16422、ISO4892-3、ASTM D4329、JIS K 7219、JIS Z 2381試驗標准。
一、溫濕度運行控制系統 溫度控制器 進口LED數顯P、I、D+S、S、R.微電腦集成控制器
二、時間控制器 進口可編程時間電腦集成控制器(金鍾默勒)
三、光照加熱系統 全獨立系統,鎳鉻合金電加熱式加熱器
四、凝露加濕系統 全不銹鋼淺表面蒸發式加濕器 五、黑板溫度 雙金屬黑板溫度計裂陸
六、供水系統 加濕供水採用自動控制 七、暴露方式 濕汽冷凝暴露,光照輻射暴露
八、安全保護 漏電、短路、超溫、缺水、過電流保護/控制器停電記憶
九、工作室尺寸D譝譎 450x1170x500 支持樣板數量:150x75約40塊
十、性能指標 溫度范圍 RT+10℃~70℃ 十一、濕度范圍 =95%R
十二、燈管間距離35mm 十肆缺頃三、樣品與燈管距離50mm
十四、紫外波長290nm~400nm UA-A、UA-B、UA-C(訂貨時說明) 十五、燈管功率40W
C. 紅外光譜的儀器
紅外光譜分析是利用紅外光譜對材料分子進行的分析和鑒定方法。檢測時會將一束不同波長的紅外射線照射到材料上,波長的紅外光被吸收,形成這紅外光譜。
紅外光譜分析具有以下特點:1.除單原子分子及單核分子外,幾乎所有有機物均有紅外吸收。2.特徵性強,可使用定性分析,對紅外光譜的波數位置、波峰數目及強度確定分子結構,4.定量分析固、液、氣態樣均可,用量少,不破壞樣品。電火花直讀光譜儀也是同樣利用光譜檢測的質檢設備。
並且紅外光譜儀根據檢測方式可以分為兩種,一種是採用棱鏡和光柵的光譜儀,屬於色散型檢測,它的單色器為棱鏡或光柵,屬單通道測量。其次是傅里葉變換紅外光譜儀,它屬於非色散型檢測。二者可用於研究分子的結構和化學鍵,也可以作為表徵和鑒別化學物種的方法。因此這類光譜分析儀價格也會有所不同。企業可進一步咨詢光譜儀價格的其他相關問題,工程師將會結合20年實戰經驗,以及相關材料檢測專業知識,為您在線解答。
D. 近紅外的分析儀器
近紅外光譜儀器從分光系統可分為固定波長濾光片、光柵色散、快速傅立葉變換、聲光可調濾光器和陣列檢測五種類型。
濾光片型主要作專用分析儀器,如糧食水分測定儀。由於濾光片數量有限,很難分析復雜體系的樣品。光柵掃描式具有較高的信噪比和解析度。由於儀器中的可動部件(如光柵軸)在連續高強度的運行中可能存在磨損問題,從而影響光譜採集的可靠性,不太適合於在線分析。傅立葉變換近紅外光譜儀是具有較高的解析度和掃描速度,這類儀器的弱點同樣是干涉儀中存在移動性部件,且需要較嚴格的工作環境。聲光可調濾光器是採用雙折射晶體,通過改變射頻頻率來調節掃描的波長,整個儀器系統無移動部件,掃描速度快。但這類儀器的解析度相對較低,價格也較高。
隨著陣列檢測器件生產技術的日趨成熟,採用固定光路、光柵分光、陣列檢測器構成的NIR儀器,以其性能穩定、掃描速度快、解析度高、信噪比高以及性能價格比好等特點正越來越引起人們的重視。在與固定光路相匹配的陣列檢測器中,常用的有電荷耦合器件(CCD)和二極體陣列(PDA)兩種類型,其中CCD多用於近紅外短波區域的光譜儀, PDA檢測器則用於長波近紅外區域。 在近紅外光譜儀器的選型或使用過程中,考慮儀器的哪些指標來滿足分析的使用要求,這是分析工作者需要考慮的問題。對一台近紅外光譜儀器進行評價時,必須要了解儀器的主要性能指標,下面就簡單做一下介紹。
波長范圍
對任何一台特定的近紅外光譜儀器,都有其有效的光譜范圍,光譜范圍主要取決於儀器的光路設計、檢測器的類型以及光源。近紅外光譜儀器的波長范圍通常分兩段,700~1100nm的短波近紅外光譜區域和1100~2500nm的近紅外光譜區域。
在定標過程中,標准樣本數量的多少,直接影響分析結果的准確性,數量太少不足以反映被測樣本群體常態分布規律,以提高定標效果,使定標曲線具有廣泛的應用范圍,對變異范圍比較大的樣本可以根據特定的篩選原則,進行多個定標,以提高定標效果及檢驗的准確性。一般來講,單類純樣本由於樣本性質穩定,含化學信息量相對少,因此定標相對容易,如玉米、小麥、大豆等純樣;混合樣本樣品信息復雜,在本譜區會引起多種基團譜峰的重疊,信息解析困難,定標困難,如畜牧生產中的各種全價飼料、配合飼料、濃縮飼料等。
長波近紅外光譜區域。
解析度
光譜的解析度主要取決於光譜儀器的分光系統,對用多通道檢測器的儀器,還與儀器的像素有關。分光系統的光譜帶寬越窄,其解析度越高,對光柵分光儀器而言,解析度的大小還與狹縫的設計有關。儀器的解析度能否滿足要求,要看儀器的分析對象,即解析度的大小能否滿足樣品信息的提取要求。有些化合物的結構特徵比較接近,要得到准確的分析結果,就要對儀器的解析度提出較高的要求,例如二甲苯異構體的分析,一般要求儀器的解析度好於1nm。
准確性
光譜儀器波長准確性是指儀器測定標准物質某一譜峰的波長與該譜峰的標定波長之差。波長的准確性對保證近紅外光譜儀器間的模型傳遞非常重要。為了保證儀器間校正模型的有效傳遞,波長的准確性在短波近紅外范圍要求好於0.5nm,長波近紅外范圍好於1.5nm。
重現性
波長的重現性指對樣品進行多次掃描,譜峰位置間的差異,通常用多次測量某一譜峰位置所得波長或波數的標准偏差表示(傅立葉變換的近紅外光譜儀器習慣用波數cm-1表示)。波長重現性是體現儀器穩定性的一個重要指標,對校正模型的建立和模型的傳遞均有較大的影響,同樣也會影響最終分析結果的准確性。一般儀器波長的重現性應好於0.1nm。
准確性
吸光度准確性是指儀器對某標准物質進行透射或漫反射測量,測量的吸光度值與該物質標定值之差。對那些直接用吸光度值進行定量的近紅外方法,吸光度的准確性直接影響測定結果的准確性。
重現性
吸光度重現性指在同一背景下對同一樣品進行多次掃描,各掃描點下不同次測量吸光度之間的差異。通常用多次測量某一譜峰位置所得吸光度的標准偏差表示。吸光度重現性對近紅外檢測來說是一個很重要的指標,它直接影響模型建立的效果和測量的准確性。一般吸光度重現性應在0.001~0.0004A之間。
噪音
吸光度噪音也稱光譜的穩定性,是指在確定的波長范圍內對樣品進行多次掃描,得到光譜的均方差。吸光度噪音是體現儀器穩定性的重要指標。將樣品信號強度與吸光度噪音相比可計算出信噪比。
范圍
吸光度范圍也稱光譜儀的動態范圍,是指儀器測定可用的最高吸光度與最低能檢測到的吸光度之比。吸光度范圍越大,可用於檢測樣品的線性范圍也越大。
穩定性
基線穩定性是指儀器相對於參比掃描所得基線的平整性,平整性可用基線漂移的大小來衡量。基線的穩定性對我們獲得穩定的光譜有直接的影響。
雜散光
雜散光定義為除要求的分析光外其它到達樣品和檢測器的光量總和,是導致儀器測量出現非線性的主要原因,特別對光柵型儀器的設計,雜散光的控制非常重要。雜散光對儀器的噪音、基線及光譜的穩定性均有影響。一般要求雜散光小於透過率的0.1%。
掃描速度
掃描速度是指在一定的波長范圍內完成1次掃描所需要的時間。不同設計方式的儀器完成1次掃描所需的時間有很大的差別。例如,電荷耦合器件多通道近紅外光譜儀器完成1次掃描只需20ms,速度很快;一般傅立葉變換儀器的掃描速度在1次/s左右;傳統的光柵掃描型儀器的掃描速度相對較慢,較快的掃描速度也不過2次/s左右。
采樣間隔
采樣間隔是指連續記錄的兩個光譜信號間的波長差。很顯然,間隔越小,樣品信息越豐富,但光譜存儲空間也越大;間隔過大則可能丟失樣品信息,比較合適的數據采樣間隔設計應當小於儀器的解析度。
測樣方式
測樣方式在此指儀器可提供的樣品光譜採集形式。有些儀器能提供透射、漫反射、光纖測量等多種光譜採集形式。
軟體功能
軟體是現代近紅外光譜儀器的重要組成部分。軟體一般由光譜採集軟體和光譜化學計量學處理軟體兩部分構成。前者不同廠家的儀器沒有很大的區別,而後者在軟體功能設計和內容上則差別很大。光譜化學計量學處理軟體一般由譜圖的預處理、定性或定量校正模型的建立和未知樣品的預測三大部分組成,軟體功能的評價要看軟體的內容能否滿足實際工作的需要。
E. 紅外吸收光譜儀器主要構成是什麼
光譜儀器的基本構成
1.光源
光源能發射出穩定、高強度、連續波長的紅外光,通常使用能斯特(Nernst)燈、碳化硅或塗有稀土化合物的鎳鉻旋狀燈絲。
2.干涉儀
邁克耳孫(Michelson)干涉儀的作用是將復色光變為干涉光。中紅外干涉儀中的分束器主要是由溴化鉀材料製成的;近紅外分束器一般以石英和CaF2為材料;遠紅外分束器一般由Mylar膜和網格固體材料製成。
3.檢測器
檢測器一般分為熱檢測器和光檢測器兩大類。熱檢測器是把某些熱電材料的晶體放在兩塊金屬板中,當光照射到晶體上時,晶體表面電荷分布變化,由此可以測量紅外輻射的功率。熱檢測器有氘代硫酸三甘肽(DTGS),鉭酸鋰(LiTaO3)等類型。光檢測器是利用材料受光照射後,由於導電性能的變化而產生信號,最常用的光檢測器有銻化銦、汞鎘碲等類型。
F. 紅外線測溫儀一般有具體哪些功能
紅外復線測溫儀最重要的功能就是測量體制溫。常見的紅外測溫儀有紅外熱成像測溫儀和紅外體溫計兩種。
紅外熱成像體溫快速篩檢儀,可在人流密集的公共場所進行大面積監測,自動跟蹤、報警高溫區域,與可見光視頻配合,快速找出並追蹤體溫較高的人員。無需工作人員近距離檢查通關人員,遠距離測溫既尊重了彼此隱私,也減少了近距離接觸和人員聚集引起的交叉感染的風險;綜合智能測溫平台系統實現了無人化操作。
在人流量大、密集型區域,如學校、商場、銀行、證券交易所、影院、集市等公共場所;採用篩查型測溫方式,快速實現對發熱人員篩查,避免手工篩查造成的人員擁擠和聚集。在接近人流通過的出入口區域,設置雙光譜測溫攝像機,鏡頭對准出入通道,測溫攝像機設置一個接近發熱(譬如:3.3℃)的報警閥值,當人流中有達到或超過這個閥值,後端平台報警提醒工作人員,可以對發熱可疑人員進行二次測溫,既能快速篩查,也可避免工作人員一對一近距離接觸式測溫工作,形成交叉感染的風險。
G. 紅外線用什麼儀器測量發射量
紅外分光光度計,傅立葉變紅外光譜儀
傅里葉變換紅外光譜儀主要由邁克爾遜干涉儀和計算機組成。邁克爾遜干涉儀的主要功能是使光源發 出的光分為兩束後形成一定的光程差,再使之復合以產生干涉,所得到的干涉圖函數包含了光源的全部頻率 和強度信息。用計算機將干涉圖函數進行傅里葉變換,就可計算出原來光源的強度按頻率的分布。[1]它克服了色散型光譜儀分辨能力低、光能量輸出小、光譜范圍窄、測量時間長等缺點。它不僅可以測量各種氣體、固體、液體樣品的吸收、反射光譜等,而且可用於短時間化學反應測量。紅外光譜儀在電子、化工、醫學等領域均有著廣泛的應用。[2]傅里葉變換紅外(Fourier Transform Infrared,FTIR)光譜儀主要由紅外光源、分束器、干涉儀、樣品池、探測器、計算機數據處理系統、記錄系統等組成,是干涉型紅外光譜儀的典型代表,不同於色散型紅外儀的工作原理,它沒有單色器和狹縫,利用邁克爾遜干涉儀獲得入射光的干涉圖,然後通過傅里葉數學變換,把時間域函數干涉圖變換為頻率域函數圖(普通的紅外光譜圖)。[3]
(1)光源:傅里葉變換紅外光譜儀為測定不同范圍的光譜而設置有多個光源。通常用的是鎢絲燈或碘鎢 燈(近紅外)、硅碳棒(中紅外)、高壓汞燈及氧化釷燈(遠紅外)。
(2)分束器:分束器是邁克爾遜干涉儀的關鍵元件。其作用是將入射光束分成反射和透射兩部分,然後 再使之復合,如果可動鏡使兩束光造成一定的光程差,則復合光束即可造成相長或相消干涉。
對分束器的要求是:應在波數v處使入射光束透射和反射各半,此時被調制的光束振幅最大。根據使用 波段范圍不同,在不同介質材料上加相應的表面塗層,即構成分束器。
(3)探測器:傅里葉變換紅外光譜儀所用的探測器與色散型紅外分光光度計所用的探測器無本質的區 別。常用的探測器有硫酸三甘鈦(TGS)、鈮酸鋇鍶、碲鎘汞、銻化銦等。
(4)數據處理系統:傅里葉變換紅外光譜儀數據處理系統的核心是計算機,功能是控制儀器的操作,收集 數據和處理數據。[1