① 化學實驗時,連接實驗儀器的叫什麼
應該叫導管。
② 樁基檢測有什麼儀器
超聲波檢測儀(檢測樁基混凝土的密實程度)、小應變儀(敲擊振動法,檢測樁基整體承載力)、大應變儀(檢測樁基承載力和沉降)
超聲波檢測儀 超聲波檢測儀泄漏檢測系統不同於特定氣體感應器受限於它所設計來感應的特定氣體,而是以聲音來檢測。
任何氣體通過泄漏孔都會產生渦流,會有超音波的波段的部份,使得超音波檢測儀泄漏檢測系統能夠感應任何種類的氣體泄漏。
用超聲波檢測儀泄漏檢測系統掃描,可從耳機聽到泄漏聲或看到數位信號的變動。越接近泄漏點,越明顯。 若現場環境吵雜,可用橡皮管縮小接收區和遮蔽拮抗超音波。
應變儀 strain gauge 一般也稱電阻應變儀。有線應變儀、箔應變儀、半導體應變儀等。隨著變形會發生電阻值變化的應變片按規定方向貼在試件表面,由於試件表面應變造成應變片的電阻值變化。人們用高靈敏度檢流計測出電阻值的變化。並用此推得應變值的大小變化。應變儀廣泛應用於材料的力學性能檢測中,例如測定材料拉伸模量,就是用所加負荷和同時由貼在試件表面的應變片測出的應變值經計算而得。
③ 血細胞分析儀單通道和雙通道哪個好
通道就是檢測血細胞時所用的通道。人類血細胞可以分為紅細胞、白細胞和血小板三類,除此之外,血紅蛋白也是血細胞分析儀的檢測項目之一,單雙通道的區別就是將這些細胞一起還是分開來檢測。
單通道儀器的檢測速度要慢一些,一般是30T/h,這樣的儀器不太適合醫院門診量稍大的單位,以免使患者和醫生產生焦灼感,雙通道的儀器可以達到60T/h,是醫院比較理想的選擇;
單通道儀器只有一個通道,因此無論紅細胞、白細胞還是血小板都在一個80μm的通道中檢測,這樣會對RBC計數造成一些影響,而雙通道根據細胞大小不同,開設兩個通道,將紅細胞與白細胞的檢測分開來進行,既保證檢測結果的准確性,又能節省時間。海力孚血細胞分析儀就採用雙通道檢測,可以有效避免常見的堵孔現象的出現。
單通道的儀器檢測時,如果血樣沒有那麼理想的話,儀器就很容易堵孔,輕微的堵孔可採用儀器自帶的排堵系統進行排堵,而嚴重的堵孔則很難自己排除。
④ 請問HPLC是做什麼的原理操作方法
HPLC是高效液相色譜,英文全稱是High Performance Liquid Chromatography。該方法在化學、醫學、工業、農學、商檢和法檢等學科領域中被用來做重要的分離分析技術。
用途:高效液相色譜更適宜於分離、分析高沸點、熱穩定性差、有生理活性及相對分子量比較大的物質,因而廣泛應用於核酸、肽類、內酯、稠環芳烴、高聚物、葯物、人體代謝產物、表面活性劑,抗氧化劑、殺蟲劑、除莠劑的分析等物質的分析。
原理:高效液相色譜以液體為流動相,採用高壓輸液系統,將具有不同極性的單一溶劑或不同比例的混合溶劑、緩沖液等流動相泵入裝有固定相的色譜柱,在柱內各成分被分離後,進入檢測器進行檢測,從而實現對試樣的分析和分離。
操作方法:如下圖所示,溶劑貯器中的流動相被泵吸入,經梯度控制器按一定的梯度進行混合然後輸出,經測其壓力和流量,導入進樣閥(器)經保護柱、分離柱後到檢測器檢測,由數據處理設備處理數據或記錄儀記錄色譜圖,餾分收集器收集餾分,廢液瓶收集廢液。
液相色譜法開始階段是用大直徑的玻璃管柱在室溫和常壓下用液位差輸送流動相,稱為經典液相色譜法,此方法柱效低、時間長(常有幾個小時)。高效液相色譜法(High performance Liquid Chromatography,HPLC)是在經典液相色譜法的基礎上,於60年代後期引入了氣相色譜理論而迅速發展起來的。
HPLC根據固定相和流動相的成分分為正相色譜和反向色譜。
正相色譜法
採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法
一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
⑤ 檢測儀器有哪些
測量儀器有:水準儀、經緯儀、電磁波測距儀等。
測量儀器的概念其基本內容包括:精度、誤差、測量標准器材、長度測量、角度測量、形狀測量、傳統光學儀器。在精密測量上的應用等等。
測量儀器有接觸式和光學試測量兩種(現在用得最多) 接觸式:一般測量工具和3D測量工具(三坐標測量機又叫三次元) 三坐標測量機又叫三次元 ,它可以測量很多復雜的空間尺寸:如模具和汽車產品。
測線一端發射出去,由另一端返回後,用鑒相器測量發射波與回波之間的相位差嗘。若調制頻率為f,則電磁波往返經歷的時間為:式中n是
時間t中的整周數。將 t代入到上列脈沖測距法的公式中,得距離D為: ,式中λ是已知的調制波波長相當於測量距離的尺子的長度,n相當於測程上的整尺數是不足一個測尺長的尾數。
為了確定整尺數n,通常採用可變頻率法和多級固定頻率法。前者是使測距儀的調制頻率在一定范圍內連續變化,這就相當於連續改變測尺長度,使它恰好能量盡待測距離。
測距時,逐次調變頻率,使不足整尺的尾數等於零。根據出現零的次數和相應的頻率值,就可以確定整測尺數n°當採用多級固定頻率法時,相當於採用幾根不同長度的測尺丈量同一距離。根據用不同頻率所測得的相位差,就可以解出整周數n,從而求得距離D
⑥ 單通道和雙通道的toc自動監測儀儀器的區別
雙通道和單通道一般和內存控制器相關。
一些老的主板內存控制器是集成在北橋晶元裡面,現在的內存控制器一般都是集成在CPU裡面了。
不論是整合在北橋晶元還是CPU裡面,一般整合一個內存控制器就叫單通道,整合兩個或兩個以上內存控制器並行運作就叫雙通道或多通道。
現在的處理器至少都能支持雙通道技術,甚至支持多通道技術。
普通的單通道內存系統具有一個64位的內存控制器,而雙通道內存系統則有2個64位的內存控制器,在雙通道模式下具有128bit的內存位寬,從而在理論上把內存帶寬提高一倍。
雖然雙64位內存體系所提供的帶寬等同於一個128位內存體系所提供的帶寬,但是二者所達到效果卻是不同的。
雙通道體系包含了兩個獨立的、具備互補性的智能內存控制器,理論上來說,兩個內存控制器都能夠在彼此間零延遲的情況下同時運作。
比如說兩個內存控制器,一個為A、另一個為B。
當控制器B准備進行下一次存取內存的時候,控制器A就在讀/寫主內存,反之亦然。
兩個內存控制器的這種互補「天性」可以讓等待時間縮減50%。
雙通道DDR的兩個內存控制器在功能上是完全一樣的,並且兩個控制器的時序參數都是可以單獨編程設定的。
這樣的靈活性可以讓用戶使用二條不同構造、容量、速度的DIMM內存條,此時雙通道DDR簡單地調整到最低的內存標准來實現128bit帶寬,允許不同密度/等待時間特性的DIMM內存條可以可靠地共同運作。