㈠ PID 儀表控制 電動閥門 如何設置參數
控制電動閥的開度來達到控制溫度是可以的,我個人認為用比例電磁閥替代電動閥完專全可以實屬現PID的控制。因為比例電磁閥有標準的模擬量輸入信號和反饋信號而且具有PID調節功能。經過多年的工作經驗,我個人認為PID參數的設置的大小,一方面是要根據控制對象的具體情況而定;另一方面是經驗。P是解決幅值震盪,P大了會出現幅值震盪的幅度大,但震盪頻率小,系統達到穩定時間長;I是解決動作響應的速度快慢的,I大了響應速度慢,反之則快;D是消除靜態誤差的,一般D設置都比較小,而且對系統影響比較小。對於溫度控制系統P在5-10%之間;I在180-240s之間;D在30以下。對於壓力控制系統P在30-60%之間;I在30-90s之間;D在30以下。
㈡ 自動閥門調節PID表示什麼
在工程實際中,應用最為廣泛的調節器控制規律為比例、積分、微分控製版,簡稱PID控制,又稱權PID調節。
PID(比例(proportion)、積分(integration)、微分(differentiation))控制器作為最早實用化的控制器已有近百年歷史,現在仍然是應用最廣泛的工業控制器。PID控制器簡單易懂,使用中不需精確的系統模型等先決條件,因而成為應用最為廣泛的控制器。
PID控制器由比例單元(P)、積分單元(I)和微分單元(D)組成。其輸入e (t)與輸出u (t)的關系為
u(t)=kp[e(t)+1/TI∫e(t)dt+TD*de(t)/dt] 式中積分的上下限分別是0和t
因此它的傳遞函數為:G(s)=U(s)/E(s)=kp[1+1/(TI*s)+TD*s]
其中kp為比例系數; TI為積分時間常數; TD為微分時間常數
閥門的PID調節是工控PID調節的一種
㈢ 怎樣用PID調節,來控制一個閥門的開度
這實際上就是一個簡單的溫度單迴路控制系統,由熱電偶、調節器和調節閥組成。回由於熱電偶、調答節閥是已有的硬體,而調節器則是由PLC組態來完成,因此完成這個控制迴路的重點是在PLC的組態上。
在PLC組態狀態中:調用熱電偶S型分度號的功能塊,由於熱電偶輸入功能塊是一個標準的功能塊,其含有多種熱電偶的分度號,可選其中與熱電偶分度號匹配的分度號,定義熱電偶輸入的物理地址,命名功能塊的迴路號。調用PID功能塊,將熱電偶S型分度號功能塊的輸出與PID功能塊的輸入定義連接,命名PID調節器的迴路號,將PID的輸出定義其物理地址。這個溫度控制迴路的虛擬儀表就算連接起來了,對這個迴路中的各個參數要進行設定,比如溫度測量的量程,溫度控制的上下限報警值,調節器PID控制的P、I、D參數等等。最後熱電偶和調節閥分別連接到控制迴路的輸入、輸出端子,進行P、I、D的參數設定調節。當調節到溫度有變化時,輸出信號立刻使調節閥動作,整個調節過程迅速而無振盪,這就算完成了有效的控制。
㈣ PID調節,設定值變大,閥門輸出一直上下波動,過程值也一直波動,很長時間才能達到設定值
在工程實際中,應用最為廣泛的調節器控制規律為比例、積分、微分控制,簡專稱pid控制,又稱pid調節屬。
pid(比例(proportion)、積分(integration)、微分(differentiation))控制器作為最早實用化的控制器已有近百年歷史,現在仍然是應用最廣泛的工業控制器。pid控制器簡單易懂,使用中不需精確的系統模型等先決條件,因而成為應用最為廣泛的控制器。
pid控制器由比例單元(p)、積分單元(i)和微分單元(d)組成。其輸入e
(t)與輸出u
(t)的關系為
u(t)=kp[e(t)+1/ti∫e(t)dt+td*de(t)/dt]
式中積分的上下限分別是0和t
因此它的傳遞函數為:g(s)=u(s)/e(s)=kp[1+1/(ti*s)+td*s]
其中kp為比例系數;
ti為積分時間常數;
td為微分時間常數
閥門的pid調節是工控pid調節的一種
㈤ 閥門定位器中pid參數怎麼調節
江蘇蘇怡測控來解答
1.PID常用口訣:
參數整定找最佳,從小到大順序查
先是比例後積分,最後再把微分加
曲線振盪很頻繁,比例度盤要放大
曲線漂浮繞大灣,比例度盤往小扳
曲線偏離回復慢,積分時間往下降
曲線波動周期長,積分時間再加長
曲線振盪頻率快,先把微分降下來
動差大來波動慢。微分時間應加長
理想曲線兩個波,前高後低4比1
一看二調多分析,調節質量不會低
2.PID控制器參數的工程整定,各種調節系統中P.I.D參數經驗數據以下可參照:
溫度T: P=20~60%,T=180~600s,D=3-180s
壓力P: P=30~70%,T=24~180s,
液位L: P=20~80%,T=60~300s,
流量F: P=40~100%,T=6~60s。[1]
比例增益
變頻器的 PID 功能是利用目標信號和反饋信號的差值來調節輸出頻率的,一方面,我們希望目標信號和反饋信號無限接近,即差值很小,從而滿足調節的精度:另一方面,我們又希望調節信號具有一定的幅度,以保證調節的靈敏度。解決這一矛盾的方法就是事先將差值信號進行放大。比例增益 P 就是用來設置差值信號的放大系數的。任何一種變頻器的參數 P 都給出一個可設置的數值范圍,一般在初次調試時, P 可按中間偏大值預置.或者暫時默認出廠值,待設備運轉時再按實際情況細調。
積分時間
如上所述.比例增益 P 越大,調節靈敏度越高,但由於傳動系統和控制電路都有慣性,調節結果達到最佳值時不能立即停止,導致「超調」,然後反過來調整,再次超調,形成振盪。為此引入積分環節 I ,其效果是,使經過比例增益 P 放大後的差值信號在積分時間內逐漸增大 ( 或減小 ) ,從而減緩其變化速度,防止振盪。但積分時間 I 太長,又會當反饋信號急劇變化時,被控物理量難以迅速恢復。因此, I 的取值與拖動系統的時間常數有關:拖動系統的時間常數較小時,積分時間應短些;拖動系統的時間常數較大時,積分時間應長些。
微分時間
微分時間 D 是根據差值信號變化的速率,提前給出一個相應的調節動作,從而縮短了調節時間,克服因積分時間過長而使恢復滯後的缺陷。D 的取值也與拖動系統的時間常數有關:拖動系統的時間常數較小時,微分時間應短些;反之,拖動系統的時間常數較大時, 微分時間應長些。
調整原則
PID 參數的預置是相輔相成的,運行現場應根據實際情況進行如下細調:被控物理量在目標值附近振盪,首先加大積分時間 I ,如仍有振盪,可適當減小比例增益 P。被控物理量在發生變化後難以恢復,首先加大比例增益 P ,如果恢復仍較緩慢,可適當減小積分時間 I ,還可加大微分時間 D。
㈥ 結合閥門開度的變化趨勢,怎樣來調節PID的參數
我以前做過PID的現場調節,其實只要把PID的功能有個清晰的了解,就可以在具體的PID的調節上形成思路。另外調節分為理論計算整定法和工程整定方法,你所說的現實中老師傅所用的方法一般成為工程整定方法,這個經驗上還比較實用。
◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎
比例(P)控制
比例控制是一種最簡單的控制方式。其控制器的輸出與輸入誤差信號成比例關系。當僅有比例控制時系統輸出存在穩態誤差(Steady-state error)。
積分(I)控制
在積分控制中,控制器的輸出與輸入誤差信號的積分成正比關系。對一個自動控制系統,如果在進入穩態後存在穩態誤差,則稱這個控制系統是有穩態誤差的或簡稱有差系統(System with Steady-state Error)。為了消除穩態誤差,在控制器中必須引入「積分項」。積分項對誤差取決於時間的積分,隨著時間的增加,積分項會增大。這樣,即便誤差很小,積分項也會隨著時間的增加而加大,它推動控制器的輸出增大使穩態誤差進一步減小,直到等於零。因此,比例+積分(PI)控制器,可以使系統在進入穩態後無穩態誤差。
微分(D)控制
在微分控制中,控制器的輸出與輸入誤差信號的微分(即誤差的變化率)成正比關系。自動控制系統在克服誤差的調節過程中可能會出現振盪甚至失穩。其原因是由於存在有較大慣性組件(環節)或有滯後(delay)組件,具有抑制誤差的作用,其變化總是落後於誤差的變化。解決的辦法是使抑制誤差的作用的變化「超前」,即在誤差接近零時,抑制誤差的作用就應該是零。這就是說,在控制器中僅引入 「比例」項往往是不夠的,比例項的作用僅是放大誤差的幅值,而目前需要增加的是「微分項」,它能預測誤差變化的趨勢,這樣,具有比例+微分的控制器,就能夠提前使抑制誤差的控製作用等於零,甚至為負值,從而避免了被控量的嚴重超調。所以對有較大慣性或滯後的被控對象,比例+微分(PD)控制器能改善系統在調節過程中的動態特性。
-------------------------------------------
PID是比例,積分,微分的縮寫.
比例調節作用:是按比例反應系統的偏差,系統一旦出現了偏差,比例調節立即產生調節作用用以減少偏差。比例作用大,可以加快調節,減少誤差,但是過大的比例,使系統的穩定性下降,甚至造成系統的不穩定。
積分調節作用:是使系統消除穩態誤差,提高無差度。因為有誤差,積分調節就進行,直至無差,積分調節停止,積分調節輸出一常值。積分作用的強弱取決與積分時間常數Ti,Ti越小,積分作用就越強。反之Ti大則積分作用弱,加入積分調節可使系統穩定性下降,動態響應變慢。積分作用常與另兩種調節規律結合,組成PI調節器或PID調節器。
微分調節作用:微分作用反映系統偏差信號的變化率,具有預見性,能預見偏差變化的趨勢,因此能產生超前的控製作用,在偏差還沒有形成之前,已被微分調節作用消除。因此,可以改善系統的動態性能。在微分時間選擇合適情況下,可以減少超調,減少調節時間。微分作用對雜訊干擾有放大作用,因此過強的加微分調節,對系統抗干擾不利。此外,微分反應的是變化率,而當輸入沒有變化時,微分作用輸出為零。微分作用不能單獨使用,需要與另外兩種調節規律相結合,組成PD或PID控制器。
◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎
現實中老師傅所用的方法一般成為工程整定方法,它主要依賴工程經驗,直接在控制系統的試驗中進行,且方法簡單、易於掌握,在工程實際中被廣泛採用。PID控制器參數的工程整定方法,主要有臨界比例法、反應 曲線法和衰減法。三種方法各有其特點,其共同點都是通過試驗,然後按照工程經驗公式對控制器參數進行整定。但無論採用哪一種方法所得到的控制器參數,都需 要在實際運行中進行最後調整與完善。現在一般採用的是臨界比例法。利用該方法進行 PID控制器參數的整定步驟如下:
(1)首先預選擇一個足夠短的采樣周期讓系統工作;
(2)僅加入比例控制環節,直到系統對輸入的階躍響應出現臨界振盪,記下這時的比例放大系數和臨界振盪周期;
(3)在一定的控制度下通過公式計算得到PID控制器的參數。
在實際調試中,只能先大致設定一個經驗值,然後根據調節效果修改。
對於溫度系統:P(%)20--60,I(分)3--10,D(分)0.5--3
對於流量系統:P(%)40--100,I(分)0.1--1
對於壓力系統:P(%)30--70,I(分)0.4--3
對於液位系統:P(%)20--80,I(分)1--5
㈦ 閥門調節中的PID參數是什麼意思
你好,你說的是定位器的相關問題吧。PID參數就是設定比例、積分、微分的,一般定位器出廠時都是設定好的,用的時候可以不用設置
㈧ 怎麼用溫度通過pid調節閥門開度
流量計將流量變送為4~20mA電流信號,輸入至PLC的模擬量輸入模塊。
控制閥又稱閥回門,是流體運送系統中的答控制部件,具有導流、截流、調節、節流、防止倒流、分流或溢流卸壓等功能。可用於控制空氣、水、蒸汽、各種腐蝕性化學介質、泥漿、液態金屬和放射性物質等各種類型的流體活動。
㈨ 流量調節中,PID三個值怎麼設置現在選的閥門有點大,實際流量又很小,怎麼整都不穩
造成這個系統不穩定的原因是執行器的CV值選的偏離較多導致的。
本身閥門開度專較小屬的時候就會導致系統控制特性不好,調整PID參數的話估計不明顯。
可以給廠家聯系,重新根據CV值製作閥門裡面的啟閉件。不敢改變閥門過程連介面徑的情況下,改動閥門的CV值。
㈩ 關於PID調節比例閥的問題
1、先確定周期時間,抄在這段時間里應該至少完成開狀態一次和關狀態一次,這個時間建議設定為固定值。
2、然後確定開狀態的時間,開狀態時間與先前確定的周期時間的比值就是PID計算出的數值。關狀態時間則為周期時間減去開狀態時間。
以你的情況為例,假定我們設定10秒為一個控制周期(10秒就是周期時間),再假定PID計算出的值為50%,那就用5秒時間增加開度,在用5秒時間減小開度;再假定PID計算出的值變化為60%,那就用6秒時間增加開度,在用4秒時間減小開度。