A. 自動控制系統採用反饋校正方式,有哪些優點
反饋校正的基本原理是:用反饋校正裝置保衛帶校正系統中對動態性能改善有重大妨礙作用的某些環節,形成一個局部反饋迴路,在局部反饋迴路的開環幅值遠大於1的條件下,局部反饋迴路的特點主要取決於反饋校正裝置;適當選擇反饋校正裝置的形式和參數,可以使已校正系統的性能滿足給定的指標要求。
反饋校正有如下明顯特點。
削弱非線性特性的影響,反饋校正有降低包圍環節非線性特性影響的功能。當系統由線性工作狀態進入非線性工作狀態時,相當於系統的參數發生變化,可以證明,反饋校正可以較弱系統對參數變化的敏感性,因此反饋校正一般情況下也可以削弱非線性特性對系統的影響。
減小系統的時間常數,反饋校正有減小被包圍環節時間常數的功能,這是反饋校正的一個重要特點。
降低對參數變化的敏感性,在控制系統中,減弱參數變化對系統性能的影響,除可用魯棒控制技術外,還可採用反饋校正的方法。以位置反饋包圍慣性環節為例,設置無位置反饋時,慣性環節中的傳遞系數變化,則其相對增量也發生變化。 反饋校正的這一特點是十分重要的。一般來說,系統不可變部分的特性,包括被控對象特性在內,其參數穩定性大都與被控對象自身的因素有關,無法輕易改變;而反饋校正裝置的特性則是由設計者確定的,其參數穩定性取決於選用元部件的質量,若加以精心挑選,可使其特性基本不受工作條件改變的影響,從而降低系統對參數變化的敏感性。 採用反饋校正的控制系統,必然是多環系統。在頻域內精心多換系統的反饋校正,除可採用期望特性綜合法外,也可採用分析法校正。反饋校正裝置傳遞函數的倒數,在主要頻段內近似等於串聯校正裝置的傳遞函數,因此也可利用串聯校正設計方法確定反饋校正的參數。
B. 控制系統校正方法的校正方式
按校正裝置在控來制系源統中的連接方式,校正方式可分為串聯校正和並聯校正。如果校正裝置(傳遞函數用 Gc(s)表示)和系統不可變動部分(其傳遞函數用G0(s)表示)按串聯方式相連接(圖1a),即稱為串聯校正。如果校正裝置連接在系統的一個反饋迴路內(圖1b),則稱為並聯校正或反饋校正。圖中G1(s)和G2(s)分別表示系統不可變動部分中各部件的傳遞函數。一般說來,串聯校正比並聯校正簡單。但是串聯校正裝置常有嚴重的增益衰減,因此採用串聯校正往往同時需要引入附加放大器,以提高增益並起隔離作用。對於並聯校正,信號總是從功率較高的點傳輸到功率較低的點,無須引入附加放大器,所需元件數目常比串聯校正為少。在控制系統設計中採用哪種校正,常取決於校正要求、信號性質、系統各點功率、可選用的元件和經濟性等因素。
C. 什麼是自動控制的串聯校正,分哪幾種類型
就是對自動控制的開環特性進行修改。分為相位超前校正,相位滯後校正和相位滯後一超前校正。
當自動控制系統的靜、動態性能不能滿足所要求的性能指標時,必須對自動控制系統進行校正。校正的方法,就是在原系統中增添一些校正裝置,人為地改善系統的結構和性能,使之滿足使用者所要求的性能指標。根據校正裝置在系統中所處的位置不同,一般分為串聯校正和反饋校正。
在串聯校正中,又根據校正環節對系統開環頻率特性相位的影響,可分為相位超前校正,相位滯後校正和相位滯後一超前校正。串聯校正根據校正裝置本身是否按電源可分為無源校正裝置和有源校正裝置。有源校正常見的有
比例-微分(PD)校正裝置,比例-積分(PI)校正裝置。
D. 常用的電氣校正裝置
控制工程中用得最廣的是電氣校正裝置,它不但可應用於電的控制系統, 而且通過將非電量信號轉換成電量信號,還可應用於非電的控制系統。控制系統 的設計問題常常可以歸結為設計適當類型和適當參數值的校正裝置。校正裝置可 以補償系統不可變動部分(由控制對象、執行機構和量測部件組成的部分)在特 性上的缺陷,使校正後的控制系統能滿足事先要求的性能指標。常用的性能指標 形式可以是時間域的指標,如上升時間、超調量、過渡過程時間等(見過渡過程), 也可以是頻率域的指標,如相角裕量、增益裕量(見相對穩定性)、諧振峰值、 帶寬(見頻率響應)等。 常用的串聯校正裝置有超前校正、滯後校正、滯後-超前校正三種類型。 在許多情況下,它們都是由電阻、電容按不同方式連接成的一些四端網路。各類 校正裝置的特性可用它們的傳遞函數來表示,此外也常採用頻率響應的波德圖來 表示。不同類型的校正裝置對信號產生不同的校正作用,以滿足不同要求的控制 系統在改善特性上的需要。在工業控制系統如溫度控制系統、流量控制系統中, 串聯校正裝置採用有源網路的形式,並且製成通用性的調節器,稱為PID(比例 -積分-微分)調節器,它的校正作用與滯後-超前校正裝置類同。 自動控制原理課程設計 第一章 課程設計的目的及題目 -2- 一、課程設計的目的及題目 1.1 課程設計的目的 1)掌握自動控制原理的時域分析法,根軌跡法,頻域分析法,以及各種補 償(校正)裝置的作用及用法,能夠利用不同的分析法對給定系統進行性能分 析,能根據不同的系統性能指標要求進行合理的系統設計,並調試滿足系統的 指標。 2)學會使用MATLAB 語言及Simulink 動態模擬工具進行系統模擬與調試。 1.2 課程設計的題目 已知單位負反饋系統的開環傳遞函數 0 K ( ) ( 1 0 ) ( 6 0 ) G S S S S ,試用頻率法 設計串聯超前——滯後校正裝置,使(1)輸入速度為 1 r ad s 時,穩態誤差不大 於 1 126 rad 。(2)相位裕度 0 3 0 ,截止頻率為 20 rad s 。(3)放大器的增益不 變。 自動控制原理課程設計 第二章 課程設計的任務及要求 -3- 二、課程設計的任務及要求 2.1 課程設計的任務 設計報告中,根據給定的性能指標選擇合適的校正方式對原系統進行校正 (須寫清楚校正過程),使其滿足工作要求。然後利用MATLAB 對未校正系統和 校正後系統的性能進行比較分析,針對每一問題分析時應寫出程序,輸出結果圖 和結論。最後還應寫出心得體會與參考文獻等。 2.2 課程設計的要求 1)首先,根據給定的性能指標選擇合適的校正方式對原系統進行校正,使 其滿足工作要求。要求程序執行的結果中有校正裝置傳遞函數和校正後系統開環 傳遞函數,校正裝置的參數T, 等的值。 2)利用MATLAB 函數求出校正前與校正後系統的特徵根,並判斷其系統是 否穩定,為什麼? 3)利用MATLAB 作出系統校正前與校正後的單位脈沖響應曲線,單位階躍 響應曲線,單位斜坡響應曲線,分析這三種曲線的關系。求出系統校正前與校正 後的動態性能指標σ%、tr、tp、ts 以及穩態誤差的值,並分析其有何變化。 4)繪制系統校正前與校正後的根軌跡圖,並求其分離點、匯合點及與虛軸 交點的坐標和相應點的增益 K 值,得出系統穩定時增益 K 的變化范圍。繪制系 統校正前與校正後的Nyquist 圖,判斷系統的穩定性,並說明理由。 5)繪制系統校正前與校正後的Bode 圖,計算系統的幅值裕量,相位裕量, 幅值穿越頻率和相位穿越頻率。判斷系統的穩定性,並說明理由。 自動控制原理課程設計
E. 自動控制原理中如何選用校正裝置的類型
串聯校正比並聯校正簡單。但是串聯校正裝置常有嚴重的增益衰減,因此採用串聯校正往往同時需要引入附加放大器,以提高增益並起隔離作用。對於並聯校正,信號總是從功率較高的點傳輸到功率較低的點,無須引入附加放大器,所需元件數目常比串聯校正為少。在控制系統設計中採用哪種校正,常取決於校正要求、信號性質、系統各點功率、可選用的元件和經濟性等因素。
F. 什麼是控制系統的校正
在機械工程自動控制系統中,基本上都是最小相
位系統,而bode定理是關於最小相位系統bode圖與
系統頻率特性的關系的描述.對於系統性能校正很有用。
一般來說,開環頻率特性的低頻段表徵閉環系統的穩態性能,所以低頻增益要足夠大,以保證穩態精度的要求;中頻段表徵閉環系統的動態性能,中頻段對數幅頻特性曲線應以-20db/dec的斜率穿越零分貝線,並具有一定的寬度,以保證足夠的相位裕度和幅值裕度,使系統具有良好的動態性能;高頻段表徵系統的復雜性及雜訊抑制性能,高頻增益應盡可能小.以便減小系統雜訊影響。若系統原有高頻段已符合要求,則校正時可保持高頻段不變,以簡化校正裝置。
按照校正裝置在系統中的接法不同,可以把校正分為串聯校正和並聯校正,並聯校正又分為反饋校正和順懊校正,這些系統結構不僅適用於連續時間控制,也適用於離散系統控制。
G. 一個自動控制系統有哪幾部分組成
自動控制系統主要由:控制器,被控對象,執行機構和變送器四個環節組成。
控制器:可按照預定順序改變主電路或控制電路的接線和改變電路中電阻值來控制電動機的啟動、調速、制動和反向的主令裝置。
被控對象:一般指被控制的設備或過程為對象,如反應器、精餾設備的控制,或傳熱過程、燃燒過程的控制等。從定量分析和設計角度,控制對象只是被控設備或過程中影響對象輸入、輸出參數的部分因素,並不是設備的全部。
執行機構:使用液體、氣體、電力或其它能源並通過電機、氣缸或其它裝置將其轉化成驅動作用。
變送器:作用是檢測工藝參數並將測量值以特定的信號形式傳送出去,以便進行顯示、調節。在自動檢測和調節系統中的作用是將各種工藝參數如溫度、壓力、流量、液位、成分等物理量變換成統一標准信號,再傳送到調節器和指示記錄儀中,進行調節、指示和記錄。
(7)自動控制系統的校正裝置有擴展閱讀
自動控制系統的三大發展方向
1、現場匯流排控制系統
現場匯流排控制系統(FCS)是連接現場智能設備和自動化控制設備的雙向串列、數字式、多節點通信網路。它也被稱為現場底層設備控制網路。
目前,以現場匯流排為基礎的FCS發展很快,但FCS發展還有很多工作要做,如統一標准、儀表智能化等。可以確定的是,結合DCS、工業乙太網、先進控制等新技術的FCS將具有強大的生命力。
2、工業PC控制系統
由於PC機的開放性,具有豐富的硬體資源、軟體資源和人力資源,並且具有成本低的特點,基於PC(包括嵌入式PC)的工業控制系統,正以每年20%以上的速率增長,基於PC的工業控制技術成為本世紀初的主流技術之一。
3、智能管控一體化系統集成
隨著計算機技術、通信技術和控制技術的發展,傳統的控制領域正經歷著一場前所未有的變革,開始向網路化方向發展。對諸如圖像、語音信號等大數據量、高速率傳輸的要求,催生了當前在商業領域風靡的乙太網與控制網路的結合。
這股工業控制系統網路化浪潮又將諸如嵌入式技術、多標准工業控制網路互聯、無線技術等多種當今流行技術融合進來,從而拓展了工業控制領域的發展空間,帶來新的發展機遇。