Ⅰ 不銹鋼中氮元素的化學分析方法
可稱取少量樣品,用稀鹽酸或稀硫酸溶解,稀釋至PPM級後用ICP(等離子電感耦合光譜)進行氮元素分析,可以定量分析樣品中氮元素的含量
Ⅱ 400不銹鋼不沾鍋所承受的最高溫度
不同種類不銹鋼耐最高溫度有所差異,一般做為容器的不銹鋼能耐600度,做為密封件時的不銹鋼只能用到315度。工業用的310S不銹鋼最高使用溫度1150度。銹鋼耐空氣、蒸汽、水等弱腐蝕介質和酸、鹼、鹽等化學浸蝕性介質腐蝕。不銹鋼的耐蝕性隨含碳量的增加而降低,因此,大多數不銹鋼的含碳量均較低,最大不超過1.2%,有些鋼的ωc(含碳量)甚至低於0.03%(如00Cr12)。不銹鋼中的主要合金元素是Cr(鉻),只有當Cr含量達到一定值時,鋼材有耐蝕性。因此,不銹鋼一般Cr(鉻)含量至少為10.5%。不銹鋼中還含有Ni、Ti、Mn、N、Nb、Mo、Si、Cu等元素。(2)怎麼控制不銹鋼的氮含量擴展閱讀:不銹鋼常按組織狀態分為:馬氏體鋼、鐵素體鋼、奧氏體鋼、奧氏體-鐵素體(雙相)不銹鋼及沉澱硬化不銹鋼等。另外,可按成分分為:鉻不銹鋼、鉻鎳不銹鋼和鉻錳氮不銹鋼等。還有用於壓力容器用的專用不銹鋼《GB24511_2009_承壓設備用不銹鋼鋼板及鋼帶》。不銹鋼產品用途的不同對焊接性能的要求也各不相同。一類餐具對焊接性能一般不做要求,甚至包括部分鍋類企業。但是絕大多數產品都需要原料焊接性能好,像二類餐具、保溫杯、鋼管、熱水器、飲水機等。參考資料來源:網路-耐高溫不銹鋼參考資料來源:網路-不銹鋼
這里相信有你要的答案,還有很多列表以供參考!http://www.888th.com.cn/article/show.asp?id=2291不銹鋼牌號發展動向作者:轉載 關鍵詞:不銹鋼牌號發展動向--------------------------------------------------------------------------------不銹鋼是20世紀重要發明之一,經過近百年的研製和開發已形成一個有300多個牌號的系列化的鋼種。在特殊鋼體系中不銹鋼性能獨特,應用范圍廣,起其它特殊鋼無法代替的作用,而不銹鋼幾乎可以涵蓋其它任何一類特殊鋼。1 奧氏鋼的演變在發達國家,每年消耗的不銹鋼中約有70%是奧氏體不銹鋼,盡管我國消費水平不高,奧氏體不銹鋼的消耗量也達到總消耗量的65%左右。所以看不銹鋼牌號發展動向首先要看奧氏體不銹鋼的動向。早期的研究者已發現碳是造成奧氏體不銹鋼晶界腐蝕損壞的主要原因,限於當時的冶金設備水平,很難將碳控制到0.03%以下,最終想出了在鋼中加入 Ti和Nb,使其優先與碳反應,生成TiC和NbC,將碳固定住的方法,防止碳在晶界析出生成Cr23C6,造成晶間腐蝕。由於Nb的成本很高,直到七十年代中期,含Ti穩定化鋼1Cr18Ni9Ti仍在不銹鋼中佔主導地位。1Cr18Ni9Ti鋼水粘稠,連鑄坯表面質量很難過關。採用模鑄,鋼錠表面質量不好,必須進行剝皮修磨,成材率很低。成品鋼材含有TiN夾雜,純凈度低,表面拋光性能差,拉細絲斷頭多。到了20世紀60年代末期,不銹鋼冶煉技術取得了突破性進展,廣泛採用AOD和VOD法煉鋼,降低不銹鋼中的碳不再歉鑫侍飭恕E貳⒚饋⑷盞裙ひ搗⒋錒�蟻群罌�⒘艘幌盜械吞己統�吞幾鄭�琓i穩定化鋼逐步被低碳和超低碳鋼所取代。七十年代,美、日等國已將 1Cr18Ni9Ti從標准中淘汰,盡管保留了0Cr19Ni11Ti(321)但其產量僅占總量的0.7~1.5%,順利地完成了從含鈦穩定化鋼向低碳和超低碳鋼的過渡。我國不銹鋼的生產與應用相對滯後,盡管1984年頒布國家標准GB1220-84《不銹鋼棒》時,將1Cr18Ni9Ti列為不推薦使用牌號,但1Cr18Ni9Ti的主導地位並沒有變化。直到1995年,隨著國民經濟的發展,特別是合資企業的介入,國內市場與國際市場逐步接軌,短短5~6 年時間,我國奧氏體不銹鋼已完成從含鈦穩定化鋼向低碳和超低碳鋼的過渡。目前除少數傳統產業仍使用1Cr18Ni9Ti外,304(0Cr19Ni9)和 316(0Cr17Ni12Mo)已成為不銹鋼的主導牌號。2 以氮代碳,發展含氮不銹鋼在奧氏體不銹鋼中氮和碳有許多共同特性,如增加奧氏體穩定性,能有效提高鋼的冷加工強度等。提高碳含量會降低不銹鋼的抗晶間腐蝕性能,氮與鉻的親和力要比碳與鉻的親和力小,奧氏體鋼很少見到Cr2N的析出。因此,加適量的氮能在提高鋼的強度和抗氧化性能的同時,不降低不銹鋼的抗晶間腐蝕性能。以氮代碳,開發含氮不銹鋼已成為熱門話題。氮在鋼中的溶解度有限(<0.15%),加入鉻和錳能提高其溶解度,加入鎳和碳能減少其溶解度。在大氣冶煉條件下,氮通常以Cr-N或 Mn-N合金形式加入鋼中,但回收率很難准確控制,一般認為氮含量超過0.2%對冶煉操作極為不利。氬-氧精煉,加壓電渣熔煉,平衡壓力澆鑄等技術的發展和應用,使准確控制鋼中氮含量,用氮來控制鋼中的組織成為現實。近期研究成果表明,適當調整不銹鋼成分,特別是鉻與錳的配比,能將鋼中的氮含量穩定在 0.4%左右,近年來,美國和日本標准(ASTM A580和JIS G4309)先後增加了304N(0Cr19Ni9N)、316N(0Cr17Ni12Mo2N)、XM-19(0Cr22Ni12Mn5Mo2N)、 XM-31(1Cr18Mn15N)、XM-10(0Cr20Ni7Mn9N)、XM-11(00Cr20Ni7Mn9N)XM-28 (1Cr18Ni2Mn12N)、XM-29(0Cr18Ni3Mn13N)和S28200(1Cr18Mn18MoCuN)共9個含氮牌號。圖1 奧氏鋼的演變3 開發和推廣200系列不銹鋼二戰期間鎳供應嚴重不足,德國人首先研製出以錳一氮代替部分鎳的不銹鋼。20世紀50年代美國人因為同樣理由,經深入研究,將錳一氮代鎳鋼定型,開發了高錳系列奧氏體不銹鋼,即200系列不銹鋼。我國鎳資源匱乏,鉻資源也不豐富,以錳-氮代鎳,開發和推廣200系列不銹鋼不僅可以降低不銹鋼成本,還有深遠的戰略意義。印度在200系列不銹鋼推廣應用方面走在世界的前列,目前全世界200系列鋼70%以上是印度生產的,值得我們借鑒。200(Cr-Mn-Ni)系列不銹鋼常見牌號的化學成分如表1 。200系列鋼以錳-氮代鎳,材料成本顯著降低。但降低鎳後,為保持奧氏體組織必須有足夠高的錳、碳和氮來增加鎳當量,因此造成200系列鋼具有以下特性:①固溶處理後的抗拉強度偏高,一般為800~1100Mpa,而且無法將抗拉強度降下來。②冷加工硬化率急劇上升,冷加工強化系數K>15,加工難度大,過程成本增加。③200系列鋼具有優良的耐磨性能。④200系列鋼彎曲成形、冷鐓和沖壓性能較差。⑤傳統的200系列鋼,對晶間腐蝕很敏感,而且加穩定化元素也無法改變其敏感性。⑥部分鋼(如205、2Cr15Mn15Ni2N等)由於其穩定奧氏體元素含量相對比304高,抗磁性能優於304。鑒於上述特性,201、202和205等鋼絲主要用於製作彈簧、篩網和精密軸等。表1 200(Cr-Mn-Ni)系列不銹鋼化學成分為提高200系列鋼在各種介質中的耐蝕性能,改善鋼的冷加工和冷頂鍛性能,達到用200系列鋼代替304的目標,近年來主要從以下幾方面著手開發新牌號。①以氮代替碳,穩定奧氏體、在提高強度同時提高耐蝕性能,如204、211、216。②適量添加Mo、Nb等元素,改善鋼的抗點蝕、晶間腐蝕和抗應力腐蝕性能,如216、223。③加銅降低鋼的冷加工硬化率,改善冷頂鍛和冷成形性能,如204Cu、211、223。美國冶金學家、ASTM會員約翰 o邁傑,用204Cu代替304的研究成果尤其令人鼓舞。邁傑在改型201(C=0.03%、Mo=0.2%)鋼基礎上分別添加1%、2%和3%的銅,發現隨Cu含量增加鋼的屈服強度和抗拉強度穩步下降,如表2 。表2 銅對改型201力學性能的影響204Cu由於含3%Cu,軟化處理後的抗拉強度已與304接近,但其冷加工硬化率顯著降低。從圖2可以看出,冷拉減面率≤45%時,204Cu 的冷加工硬化趨勢基本與304和304FQ(304M)相近,減面率>45%時,204Cu的冷加工硬化率明顯低於304。取304、204Cu和改型201鋼絲(ф3.5mm)在同樣條件下進行冷頂鍛試驗試圖2 204Cu與304冷加工硬化趨勢對比 驗結果如表3 。(作者註:1Ksi=0.0069Mpa)表表3 冷頂鍛試驗結果註:Φ3.5mm鋼絲經多道次模具沖頂成形,螺栓頭部直徑為鋼絲的3.5倍。每個牌號取數百個螺栓, 肉眼檢查頭部裂紋狀況。/p>從表3 可以看出,改型201加3%Cu後,耐鹽霧腐蝕和冷成形能力有了根本性的改善。204Cu冷頂鍛成形性能優於304,耐鹽霧腐蝕能力與304相當。進一步試驗已證明,在5種常見酸性介質中,204Cu的耐腐蝕性能優於304,如表4 。表4 204Cu與304耐蝕性能比較註:試驗溫度從0℃,每次升5℃,逐步上升到全部試樣出現浸蝕裂紋的溫度-25℃為止。*不產生浸蝕裂紋的最高溫度。綜上所述,204Cu與304相比,抗拉強度和屈服強度高,冷加工硬化率低,冷成形性能好;在各種腐蝕環境中的耐蝕性能優於,至少是相當於 304;再加上200系列鋼固有的耐磨損、材料成本低等優勢,204Cu完全有可能取代304成為通用不銹鋼。美國近年來在電子、通訊、安全防護、食品加工、能源和煙草加工行業,大力推廣204Cu,成效顯著。4 超級鐵素體不銹鋼鐵素體不銹鋼具有良好的耐蝕性能和抗氧化性能,其抗應力腐蝕性能優於奧氏體不銹鋼,價格比奧氏體不銹鋼便宜,但存在可焊性差、脆性傾向比較大的缺點,生產和使用受到限制。二十世紀60年代初期的研究已經證明,鐵素體鋼的高溫脆性、沖擊韌性、可焊性都與鋼中的間隙元素含量有關,通過降低鋼中的碳和氮的含量,添加鈦、鈮、鋯、鉭等穩定化元素,添加銅、鋁、釩等焊縫金屬韌化元素3種途徑,可以改善鐵素體鋼的可焊性和脆性。鐵素體按C+N含量可以分為不同級別:C+N>0.03% 為常規鐵素體不銹鋼,表示為0Cr;C+N≤0.03% 為超低碳鐵素體不銹鋼,表示為00Cr;C+N≤0.02% 為高純鐵素體不銹鋼,表示為000Cr;C+N≤0.01% 為超純鐵素體不銹鋼,表示為0000Cr國外一些企業已經用AOD熔煉或真空熔煉加電子束精煉的方法生產出含氮低於90ppm,碳和氮總量在110~120ppm范圍內的高純鐵素體鋼。我國已研製出000Cr18Mo2Ti和000Cr30Mo2高純鐵素體鋼.國內外近期研製成功的超級鐵素體鋼化學成分如表5。表表5 超級鐵素體鋼的化學成分(wt%)美國標准ASTMA493-88已經納入XM-27(000Cr26Mo)、S44700(000Cr29Mo3)和S44800(000Cr29Ni2Mo3)3個超純鐵素體牌號,其化學成分如表6。表6 ASTMA493中超純鐵素體鋼化學成分wt%5 超級奧氏體鋼超級奧氏體鋼指Cr、Mo、N含量顯著高於常規不銹鋼的奧氏體鋼,其中比較著名的是含6%Mo的鋼(254SMo),這類鋼具有非常好的耐局部腐蝕性能,在海水、充氣、存在縫隙、低速沖刷條件下,有良好的抗點蝕性能(PI≥40)和較好的抗應力腐蝕性能,是Ni基合金和鈦合金的代用材料。超級奧氏體鋼的化學成分如表7。表7 超級奧氏體鋼的化學成分註:①點蝕指數PI =Cr%+3.3Mo%+30N%。 ②臨界縫隙腐蝕溫度CCT = -(45±5)+11Mo%。超級奧氏體不銹鋼熱加工難度較大,一般認為雜質和低熔點金屬在晶界富集、沉澱是造成奧氏體鋼熱脆性的主要原因,控制Mn≈0.5%、 Cu≤0.7%、Si≤0.30%、S≤0.005%、Bi≤5×10-6、Pb≤15×10-6有利於熱加工。超級奧氏體鋼的冷加工性能良好,其抗拉強度偏高,與一般奧氏體鋼相比,要達到相同的軟化效果,固溶溫度應提到1150~1200℃。6 超馬氏體不銹鋼傳統的馬氏體不銹鋼2~4Cr13和1Cr17Ni2缺乏足夠的延展性,在冷頂鍛變形過程中對應力十分敏感,冷加工成型比較困難。加之鋼的可焊性比較差,使用范圍受到了限制。為克服馬氏體鋼的上述不足,近年人們已找到一種有效途徑:通過降低鋼的含碳量,增加鎳含量,開發了一個新系列合金鋼--超馬氏體鋼。這類鋼抗拉強度高,延展性好,焊接性能也得到改善,因此超馬氏體鋼又稱為軟馬氏體鋼或可焊接馬氏體鋼。超馬氏體鋼的典型顯微組織為低碳回火馬氏體組織,這種組織具有很高的強度和良好的韌性。隨鎳含量和熱處理工藝的變化,某些牌號的超馬氏體鋼顯微組織中可能有10~40%的細小彌散狀殘余奧氏體,含鉻16%的超馬氏體鋼中可能出現少量的δ鐵素體。進一步改善超馬氏體鋼性能的途徑是獲得晶粒更細的回火馬氏體組織。近年來,各國不銹鋼生產企業在開發低碳、低氮超馬氏體鋼方面做了很大努力,生產出一批適用於不同用途的超馬氏體不銹鋼,幾種典型的超馬氏體鋼化學成分如表8。表8 典型超馬氏體鋼化學成分(wt%)超馬氏體鋼的成分特點是在13%或17%Cr基礎上降低C含量。(<0.03%或<0.025%)和S含量(<0.01%或<0.005%),增加Ni(4~6.5%)和Mo(最高2.5%)改善鋼的焊接性能、韌性、耐蝕性能。為獲得好的低溫性能,減少甚至完全消除顯微組織中的鐵素體是極為重要的,隨著對低溫沖擊性能要求加嚴(從-20℃降到-40℃)應選用Ni含量更高的牌號,同時在熱加工過程應控制加熱溫度(<1250℃)和加熱時間,防止產生高溫δ鐵素體相。一般說來超馬氏體鋼鍛造性能優於同類馬氏體鋼,即使鍛造溫度偏低,也可以生產出無裂紋鋼坯。br> 與馬氏體鋼相比,超馬氏體鋼盤條的強度、硬度和塑性均高出很多,並且無論是用完全退火還是球化退火的方法,都無法將盤條的強度(硬度)降到馬氏體鋼的水平。超馬氏體推薦採用650℃左右,長時間保溫,然後空冷的退火工藝來實現軟化,盤條退火後雖然強度(硬度)高,但拉拔塑性很好(斷面收縮率>40%),可以按常規工藝拉拔。一般經過兩個循環的退火拉拔,鋼絲的抗拉強度可以降到950MPa以下。阿維斯塔·謝菲爾德公司生產的248SV (00Cr16Ni5Mo)鋼淬回火成品的物理性能見表9。表表9 248SV(00Cr16Ni5Mo)的物理性能超馬氏體鋼含碳量低,加入一定量的Mo相當於提高了鉻的當量,再加上Ni的配合,耐蝕性能,特別是在含二氧化碳和硫化氫介質中的耐蝕性能有很大的提高,現已在石油和天燃氣開采、儲運設備上得到廣泛適用,在水力發電,采礦、化工及高溫紙漿生產設備上也極具應用前景。br> 超馬氏體鋼絲主要用於製作壓縮機和閥門的連桿及焊絲。人們越來越多的用超馬氏體鋼取代雙相不銹鋼,原因在於作為結構體用鋼,超馬氏體鋼具備良好的耐蝕性能和低溫沖擊性,但其強度比雙相鋼高的多,製作零件可以減小壁厚,減輕重量,節約成本。作為焊絲用鋼,目前多用雙相不銹鋼焊絲,焊後因焊縫成分與基體成分差別較大,極易出現不均勻腐蝕現象。使用超馬氏體鋼焊絲,焊縫同樣不需經熱處理直接使用,可以選配與基體更接近的成分,減輕不均勻腐蝕。更重要的是使用超馬氏體鋼代替雙相鋼材料成本可降低30%左右。7 抗菌不銹鋼隨著經濟的發展,不銹鋼在食品工業、餐飲服務業和家庭生活中的應用越來越廣泛,人們希望不銹鋼器皿和餐具除具有不銹、光潔如新的特點外,最好還具有防霉變、抗菌、殺菌功能,日本日新制鋼為適應市場需求,已研製開發了一系列抗菌不銹鋼。眾所周知,有些金屬,如銀、銅、鉍等具有抗菌、殺菌效果,所謂抗菌不銹鋼,就是在不銹鋼中加入適量的具有抗菌效果的元素(如銅、銀),生產出的鋼材經抗菌性熱處理後,具有穩定的加工性能和良好的抗菌性能。銅是抗菌的關鍵元素,加多少既要考慮抗菌性,又要保證鋼具有良好穩定的加工性能。銅的最佳加入量因鋼種而異,日新制鋼開發的抗菌不銹鋼化學成分如表10,鐵素體鋼中加銅1.5%,馬氏體鋼中加銅3%,奧氏體鋼中加銅3.8%。表10 各類抗菌不銹鋼的化學成分研究表明:銅與細菌直接接觸是抗菌殺菌的先決條件,為此抗菌不銹鋼首先要進行熱處理,使高濃度的銅從基體中析出,以ε-Cu相均勻彌散分布。再經表面拋光處理,使ε-Cu暴露在金屬表面,從而起抗菌作用。試驗結果證明,鐵素體和馬氏體不銹鋼對黃色葡萄球菌和大腸桿菌的減菌率為,奧氏體不銹鋼的減菌率99%。抗菌不銹鋼使用一段時間後表面ε-Cu相枯竭時,抗菌性能就會降低,此時經拋光之類再加工,會重新形成含ε-Cu相的新表面,恢復原有的抗菌性能。抗菌不銹鋼與同類不銹鋼相比,耐蝕性能有增無減,物理性能基本相當,力學性能稍有變化:鐵素體鋼的屈服強度與杯突稍有提高,其它性能大致相當;馬氏體不銹鋼屈服強度、抗拉強度和硬度均有明顯提高,伸長率有所下降;奧氏體鋼屈服強度和硬度稍有提高,其它性能相當。不銹鋼中加入銅對熱加工不利,對冷加工利大於弊。隨著含銅量的增加熱加工時要考慮降低加熱溫度,工藝操作不當極易造成鋼坯角裂和表面裂紋。抗菌不銹鋼與同類不銹鋼相比,拉拔塑性和承受深度冷加工的能力明顯改善,但馬氏體鋼強度(硬度)明顯提高帶來的模具損壞明顯增多。奧氏體鋼則隨銅量的增加,奧氏體穩定性能提高,冷加工強化減緩,鋼可承受更大加工率的冷加工,鋼的冷墩和深沖性能大幅度提高,鋼也由弱磁轉變為無磁。抗菌不銹鋼具有不銹鋼優點和良好的抗菌性能,投放市場以來很受歡迎,在廚房設備、食品工業的工作台及器皿、醫療器械、日常生活中的餐具及掛毛巾支架,冷藏櫃的托架等領域全面推廣使用,公共場所的一些設施如公交汽車的扶手、樓梯扶手、電話亭、護欄等為杜絕交叉感染也應試用抗菌不銹鋼。鋼絲行業應注重醫療器械用馬氏體抗菌不銹鋼絲,織網用奧氏體抗菌不銹鋼絲和清潔球用鐵素體抗菌不銹鋼細絲的開發。參考資料1(美)DONALD PECKNE 主編,顧守仁等譯, 《不銹鋼手冊》,機械工業出版社,1987年 3月。2陸士英等編, 《不銹鋼》,原子能出版社,1995年9月。3《國外鋼絲標准譯文集》,冶金工業部金屬製品研究所,1986年10月。4潘永村,不銹鋼, 《鋼鐵材料設計與應用》。5羅永贊,近代超級不銹鋼的發展,《特殊鋼》2000年第四期P5~7。5張孝福,超馬氏體不銹鋼, 《不銹》1999年第5期。7張孝福,抗菌不銹鋼-介紹日本的新鋼種, 《不銹》1998年第10期。8 By John Magee, Development of Type 204Cu Stainless Steel, a Low-Cost alternate to Type 304,《Wire Journal International》May 2002 P84~90.9郝培鋼,高錳低鎳奧氏體不銹鋼在廣東,《世界金屬導報》2003年8月5日第8版
一般300度,你看咱家的不銹鋼盆,放在火上干燒,幾秒鍾就變形了。這跟厚度有關。
不同種類的不銹鋼,其耐的溫度是不同的。比如:1、0Cr25Ni20(310S)號不銹鋼主要用於製造加熱爐的各種構件,其所耐的最高溫是1150℃。2、1Cr25Ni20Si2(314)號不銹鋼用於製造加熱爐的各種構件,如合成氨設備高溫爐管、輻射管、加 熱爐輥筒及燃燒室構件等,其所耐的最高溫度是980℃ 。銹鋼(Stainless Steel)是不銹耐酸鋼的簡稱,耐空氣、蒸汽、水等弱腐蝕介質或具有不銹性的鋼種稱為不銹鋼;而將耐化學腐蝕介質(酸、鹼、鹽等化學浸蝕)腐蝕的鋼種稱為耐酸鋼。由於兩者在化學成分上的差異而使他們的耐蝕性不同,普通不銹鋼一般不耐化學介質腐蝕,而耐酸鋼則一般均具有不銹性。
Ⅲ 請問不銹鋼中氮元素化學分析怎樣測定謝謝
GB/T 20124-2006《鋼鐵 氮含量的測定 惰性氣體熔融熱導法(常規方法)》
Ⅳ 鉻錳氮不銹鋼中的氮氣是怎麼加進去的
含N不銹鋼中的氮合金化主要有兩條途徑:一是加人氮化錳、氮化鉻等合金進行專合金化,屬二是用氮氣直接合金化,後者具有較低的生產成本。AOD爐可以用氮氣直接合金化,因而,冶煉不銹鋼具有很大的優勢。太鋼在18t和40tAOD爐中應用氮在不銹鋼中的溶解、脫除理論,建立了氮合金化工藝模型,冶煉中不需要在線分析鋼中氮含量就能較為精確地控製成品中的氮含量,控制精±0.0135%。目前,太鋼已用氮氣直接合金化的方法應用該模型批量生產OCr19Ni9N、OCr19Ni9NbN、1Cr17Mn6Ni5N、00Cr18Ni5Mo3Si2N和00Cr22Ni5Mo3N等含氮不銹鋼鋼種。2003年,生產各類含N不銹鋼3.5萬t,取得了明顯的經濟效益。
Ⅳ 不銹鋼應該怎樣氮化處理
氮化處理是指一種在一定溫度下一定介質中使氮原子滲入工件表層的化學熱處理工藝。經氮化處理的製品具有優異的耐磨性、耐疲勞性、耐蝕性及耐高溫的特性。
簡介
傳統的合金鋼料中之鋁、鉻、釩及鉬元素對滲氮甚有幫助。這些元素在滲氮溫度中,與初生態的氮原子接觸時,就生成安定的氮化物。尤其是鉬元素,不僅作為生成氮化物元素,亦作為降低在滲氮溫度時所發生的脆性。其他合金鋼中的元素,如鎳、銅、硅、錳等,對滲氮特性並無多大的幫助。一般而言,如果鋼料中含有一種或多種的氮化物生成元素,氮化後的效果比較良好。其中鋁是最強的氮化物元素,含有0.85~1.5%鋁的滲氮結果最佳。在含鉻的鉻鋼而言,如果有足夠的含量,亦可得到很好的效果。但沒有含合金的碳鋼,因其生成的滲氮層很脆,容易剝落,不適合作為滲氮鋼。
一般常用的滲氮鋼有六種如下:
(1)含鋁元素的低合金鋼(標准滲氮鋼)
(2)含鉻元素的中碳低合金鋼 SAE 4100,4300,5100,6100,8600,8700,9800系。
(3)熱作模具鋼(含約5%之鉻) SAE H11 (SKD – 61)H12,H13
(4)鐵素體及馬氏體系不銹鋼 SAE 400系
(5)奧氏體系不銹鋼 SAE 300系
(6)析出硬化型不銹鋼 17 - 4PH,17 – 7PH,A – 286等
含鋁的標准滲氮鋼,在氮化後雖可得到很高的硬度及高耐磨的表層,但其硬化層亦很脆。相反的,含鉻的低合金鋼硬度較低,但硬化層即比較有韌性,其表面亦有相當的耐磨性及耐束心性。因此選用材料時,宜注意材料之特徵,充分利用其優點,俾符合零件之功能。至於工具鋼如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部強度。
技術流程
滲氮前的零件表面清洗
大部分零件,可以使用氣體去油法去油後立刻滲氮。部分零件也需要用汽油清洗比較好,但在滲氮前之最後加工方法若採用拋光、研磨、磨光等,即可能產生阻礙滲氮的表面層,致使滲氮後,氮化層不均勻或發生彎曲等缺陷。此時宜採用下列二種方法之一去除表面層。第一種方法在滲氮前首先以氣體去油。然後使用氧化鋁粉將表面作abrasive cleaning 。第二種方法即將表面加以磷酸皮膜處理(phosphate coating)。
滲氮爐的排除空氣
將被處理零件置於滲氮爐中,並將爐蓋密封後即可加熱,但加熱至150℃以前須作爐內排除空氣工作。
排除爐內的主要功用是防止氨氣分解時與空氣接觸而發生爆炸性氣體,及防止被處理物及支架的表面氧化。其所使用的氣體即有氨氣及氮氣二種。
排除爐內空氣的要領如下:
①被處理零件裝妥後將爐蓋封好,開始通無水氨氣,其流量盡量可能多。
②將加熱爐之自動溫度控制設定在150℃並開始加熱(注意爐溫不能高於150℃)。
③爐中之空氣排除至10%以下,或排出之氣體含90%以上之NH3時,再將爐溫升高至滲氮溫度。
氨的分解率
滲氮是鋪及其他合金元素與初生態的氮接觸而進行,但初生態氮的產生,即因氨氣與加熱中的鋼料接觸時鋼料本身成為觸媒而促進氨之分解。
雖然在各種分解率的氨氣下,皆可滲氮,但一般皆採用15~30%的分解率,並按滲氮所需厚度至少保持4~10小時,處理溫度即保持在520℃左右。
冷卻
大部份的工業用滲氮爐皆具有熱交換機,以期在滲氮工作完成後加以急速冷卻加熱爐及被處理零件。即滲氮完成後,將加熱電源關閉,使爐溫降低約50℃,然後將氨的流量增加一倍後開始啟開熱交換機。此時須注意觀察接在排氣管上玻璃瓶中,是否有氣泡溢出,以確認爐內之正壓。等候導入爐中的氨氣安定後,即可減少氨的流量至保持爐中正壓為止。當爐溫下降至150℃以下時,即使用前面所述之排除爐內氣體法,導入空氣或氮氣後方可啟開爐蓋。
氣體氮化
氣體氮化系於1923年由德國AF ry 所發表,將工件置於爐內,利NH3氣直接輸進500~550℃的氮化爐內,保持20~100小時,使NH3氣分解為原子狀態的(N)氣與(H)氣而進行滲氮處理,在使鋼的表面產生耐磨、耐腐蝕之化合物層為主要目的,其厚度約為0.02~0.02m/m,其性質極硬Hv 1000~1200,又極脆,NH3之分解率視流量的大小與溫度的高低而有所改變,流量愈大則分解度愈低,流量愈小則分解率愈高,溫度愈高分解率愈高,溫度愈低分解率亦愈低,NH3氣在570℃時經熱分解如下:
NH3 →〔N〕Fe + 3/2 H2
經分解出來的N,隨而擴散進入鋼的表面形成。相的Fe2 - 3N氣體滲氮,一般缺點為硬化層薄而氮化處理時間長。
氣體氮化因分解NH3進行滲氮效率低,故一般均固定選用適用於氮化之鋼種,如含有Al,Cr,Mo等氮化元素,否則氮化幾無法進行,一般使用有JIS、SACM1新JIS、SACM645及SKD61以強韌化處理又稱調質因Al,Cr,Mo等皆為提高變態點溫度之元素,故淬火溫度高,回火溫度亦較普通之構造用合金鋼高,此乃在氮化溫度長時間加熱之間,發生回火脆性,故預先施以調質強韌化處理。NH3氣體氮化,因為時間長表面粗糙,硬而較脆不易研磨,而且時間長不經濟,用於塑膠射出形機的送料管及螺旋桿的氮化。
液體氮化
液體軟氮化主要不同是在氮化層里之有Fe3Nε相,Fe4Nr相存在而不含Fe2Nξ相氮化物,ξ相化合物硬脆在氮化處理上是不良於韌性的氮化物,液體軟氮化的方法是將被處理工件,先除銹,脫脂,預熱後再置於氮化坩堝內,坩堝內是以TF – 1為主鹽劑,被加溫到560~600℃處理數分至數小時,依工件所受外力負荷大小,而決定氮化層深度,在處理中,必須在坩堝底部通入一支空氣管以一定量之空氣氮化鹽劑分解為CN或CNO,滲透擴散至工作表面,使工件表面最外層化合物8~9%wt的N及少量的C及擴散層,氮原子擴散入α – Fe基地中使鋼件更具耐疲勞性,氮化期間由於CNO之分解消耗,所以不斷要在6~8小時處理中化驗鹽劑成份,以便調整空氣量或加入新的鹽劑。
液體軟氮化處理用的材料為鐵金屬,氮化後的表面硬度以含有 Al,Cr,Mo,Ti元素者硬度較高,而其含金量愈多而氮化深度愈淺,如炭素鋼Hv 350~650,不銹鋼Hv 1000~1200,氮化鋼Hv 800~1100。
液體軟氮化適用於耐磨及耐疲勞等汽車零件,縫衣機、照相機等如氣缸套處理,氣門閥處理、活塞筒處理及不易變形的模具處。採用液體軟氮化的國家,西歐各國、美國、蘇俄、日本。
離子氮化
此一方法為將一工件放置於氮化爐內,預先將爐內抽成真空達10-2~10-3 Torr(㎜Hg)後導入N2氣體或N2 + H2之混合氣體,調整爐內達1~10 Torr,將爐體接上陽極,工件接上陰極,兩極間通以數百伏之直流電壓,此時爐內之N2氣體則發生光輝放電成正離子,向工作表面移動,在瞬間陰極電壓急劇下降,使正離子以高速沖向陰極表面,將動能轉變為氣能,使得工件表面溫度得以上升,因氮離子的沖擊後將工件表面打出Fe.C.O.等元素飛濺出來與氮離子結合成FeN,由此氮化鐵逐漸被吸附在工件上而產生氮化作用,離子氮化在基本上是採用氮氣,但若添加碳化氫系氣體則可作離子軟氮化處理,但一般統稱離子氮化處理,工件表面氮氣濃度可改變爐內充填的混合氣體(N2 + H2)的分壓比調節得之,純離子氮化時,在工作表面得單相的r′(Fe4N)組織含N量在5.7~6.1%wt,厚層在10μn以內,此化合物層強韌而非多孔質層,不易脫落,由於氮化鐵不斷的被工件吸附並擴散至內部,由表面至內部的組織即為FeN → Fe2N → Fe3N→ Fe4N順序變化,單相ε(Fe3N)含N量在5.7~11.0%wt,單相ξ(Fe2N)含N量在11.0~11.35%wt,離子氮化首先生成r相再添加碳化氫氣系時使其變成ε相之化合物層與擴散層,由於擴散層的增加對疲勞強度的增加有很多助。而蝕性以ε相最佳。
離子氮化處理的度可從350℃開始,由於考慮到材質及其相關機械性質的選用處理時間可由數分鍾以致於長時間的處理,本法與過去利用熱分解方化學反應而氮化的處理法不同,本法系利用高離子能之故,過去認為難處理的不銹鋼、鈦、鈷等材料也能簡單的施以優秀的表面硬化處理
Ⅵ 氮對焊接質量有哪些影響控制焊縫含氮量的主要措施是什麼
不同焊接方法,不同鋼種 N對於的作用不一樣,不能同日而語
不銹鋼中N是形成奧氏體的元素,要控制焊縫金相組織是有利的元素。節約鎳
碳素鋼中N有時效現象,控制少量的N防止淬硬。
氣體保護焊時 N2容易產生蜂窩狀的N2氣孔,應嚴格控制。
任何合金成分均不能做到脫N,N只能控制來源。從源頭控制。
Ⅶ 不銹鋼鑄造用什麼添加增加含氮量
在密封狀態下、直接將氮氣充入鋼包內、能保護高氮鋼水、減少高氮鋼水中氮析出的澆注高氮不銹鋼用充氮鋼包蓋。
Ⅷ 不銹鋼中各元素的作用
鉻(Cr):是主要鐵素體形成元素,鉻與氧結合能生成耐腐蝕的Cr2O3鈍化膜,是不銹鋼保持耐蝕性的基本元素之一,鉻含量增加可提高鋼的鈍化膜修復能力,一般不銹鋼中的鉻含量必須在12%以上;
碳(C):是強奧氏體形成元素,可顯著提高鋼的強度,另外碳對耐腐蝕性也有不利的影響;
鎳(Ni):是主要奧氏體形成元素,能減緩鋼的腐蝕現象及在加熱時晶粒的長大;
鉬(Mo):是碳化物形成元素,所形成的碳化物極為穩定,能阻止奧氏體加熱時的晶粒長大,減小鋼的過熱敏感性,另外鉬元素能使鈍化膜更緻密牢固,從而有效提高不銹鋼的耐Cl-腐蝕性;
鈮、鈦(Nb、Ti):是強碳化物形成元素,能提高鋼的耐晶間腐蝕能力。但碳化鈦對不銹鋼的表面質量有不利影響,因此在表面要求較高的不銹鋼中一般通過添加鈮來改善性能。
氮(N):是強奧氏體形成元素,可顯著提高鋼的強度。但是對不銹鋼的時效開裂影響較大,因此在沖壓用途的不銹鋼中要嚴格控制氮含量。
磷、硫(P、S):是不銹鋼中的有害元素,對不銹鋼的耐腐蝕性和沖壓性都會產生不利影響。
Ⅸ 不銹鋼的氮化方法有哪些
不銹鋼的氮化方法有哪些
用O-N共滲代替發藍用滲碳爐,溫度為400——420攝氏度X90min,通入氨氣350L/h,同時滴入80——100did/min甲醇,廢氣排到室外或同入水中,零件通過處理後表面呈現均勻的深藍色,抗腐蝕能力優於發藍處理。
硬度計和銼刀和表面硬度的關系銼刀可檢查殘余奧氏體的原理在於:馬氏體處於比殘余奧氏體處於膨脹的狀態,所以馬氏體總是凸起在奧氏體的狀態,而奧氏體處於凹的狀態。可以說馬氏體是分布在奧氏體的基體上。銼刀只是接觸到馬氏體,用硬度計檢查硬度時接觸的卻是接觸馬氏體和奧氏體,當銼刀和硬度計檢查的硬度相差越大時殘余奧氏體也就越多。
不銹鋼的氮化方法關鍵在於去除其鈍化膜,鈍化膜是不銹鋼防銹和不能氮化的原因所在,所以要使不銹鋼氮化,關鍵是去除表面的鈍化膜。不銹鋼氮化的目的在於提高其硬度,提高其耐摩性和抗侵蝕能力。去除鈍化膜的方法有化學法和機械法,化學法是把工件泡在50%(體積)鹽酸(溫度70度)中,然後用水清洗干凈;機械法可以採用噴沙去除鈍化膜。在相同的氮化溫度情況下,奧氏體不銹鋼比珠光體或馬氏體不銹鋼的氮化速度要慢得多,鋼中合金化程度越高氮化速度越慢。
高速鋼的氮化一般高速鋼的氮化不宜出現3相,否則將出使滲層變脆,根據以上規律,高速鋼應進行低溫短時滲氮。因為在較低的溫度下滲層厚度的增厚比較慢,便於控制,且滲層表面氮濃度較低。短時低溫氮化濃度較低,韌性較好。高速鋼(w18cr4v)一般採用510—520攝氏度)直徑《15mm的用15—20min,較大的採用25—32min,大型的採用60min。
Ⅹ 不銹鋼怎麼氮化處理啊
不銹鋼的氮化方法關鍵在於去除其鈍化膜,鈍化膜是不銹鋼防銹和不能氮化內的原因所在容,所以要使不銹鋼氮化,關鍵是去除表面的鈍化膜。不銹鋼氮化的目的在於提高其硬度,提高其耐摩性和抗侵蝕能力。去除鈍化膜的方法有化學法和機械法,化學法是把工件泡在50%(體積)鹽酸(溫度70度)中,然後用水清洗干凈;機械法可以採用噴沙去除鈍化膜。在相同的氮化溫度情況下,奧氏體不銹鋼比珠光體或馬氏體不銹鋼的氮化速度要慢得多,鋼中合金化程度越高氮化速度越慢。
高速鋼的氮化一般高速鋼的氮化不宜出現3相,否則將出使滲層變脆,根據以上規律,高速鋼應進行低溫短時滲氮。因為在較低的溫度下滲層厚度的增厚比較慢,便於控制,且滲層表面氮濃度較低。短時低溫氮化濃度較低,韌性較好。高速鋼(w18cr4v)一般採用510—520攝氏度)直徑《15mm的用15—20min,較大的採用25—32min,大型的採用60min