导航:首页 > 五金知识 > 支持向量机工具箱安装

支持向量机工具箱安装

发布时间:2021-02-26 21:55:18

Ⅰ 如何向MATLAB中添加新工具箱

今天费了好大的劲终于将SVM_SteveGunn添加至我的matlab工具箱内,并且已能成功运行,现在把在添加以及运行中出现的各种问题罗列如下,并一一解决:
1、将下载的svm工具箱添加至matlab安装目录下
1、单独下载的工具箱
2、把新的工具箱拷贝到某个目录(我的是D:softmatlab2011b oolbox)。
注意:你要是添加的很多个m文件,那就把这些m文件直接拷到再下一层你想要的工具箱的文件夹里
例如,我要添加的是支持向量机工具箱,在刚才的文件夹下我已经有svm(支持向量机工具箱)文件夹了,但有的m文件还没有,我就把新的m文件统统拷到D:softmatlab2011b oolbox svm目录下了。如果你连某工具箱(你打算添加的)的文件夹都没有,那就把文件夹和文件一起拷到D:softmatlab2011b oolbox 下。
先把工具箱保存到MATLAB安装目录的根目录下面,然后运行matlab---->file---->set path---->add folder 然后把你的工具箱文件夹添加进去就可以了
3、在matlab的菜单file下面的set path把它( D:softmatlab2011b oolbox svm )加上。
4、 把路径加进去后在file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下。

记得一定要更新!我就是没更新,所以添加了路径,一运行还是不行。后来更新了才行。

2、在对svm工具箱进行使用时,发现了'qp.dll 不是有效的 Win32 应用程序 '
问题描述:
mex在不同windows OS下编译的结果,所以我们需要重新编译一下qp.dll
解决方案:
steve gunn 的包下面有一个optimiser 文件夹,把current Diretory目录改为optimiser目录,例如E:matlabProgramSVM_SteveGunnOptimiser,然后运行命令
>> mex -v qp.c pr_loqo.c
命令运行完毕后,你会发现原先的qp.dll变为qp.dll.old,还出现了qp.mexw32,我们把该文件改为qp.dll 复制到工具箱文件夹下。原先的工具箱文件qp.dll可以先改一下名字...
3、我在运行第二步时发现了‘D:SOFTMATLAB~3BINMEX.PL: Error: Compile of 'qp.c' failed. Error using mex (line 206)
Unable to complete successfully.
这个是因为编译器设置的问题,这里需要重新选择设置编译器,设置编译器的方法:
mex -setup(mex和-setup之间要有空格),然后我选择的VS2010,然后再继续运行步骤2就成功了。

Ⅱ 如何把数据输入进支持向量机Matlab工具箱1.0 - Epsilon-SVR, Epsilon回归算法中

没想到,我也要做这方面的工作,这段时间,一起研究下。。

Ⅲ 有人知道怎么把SVDD工具箱装到libsvm吗

1 先下载 libsvm-svdd-3.18.zip和 libsvm-3.18.zip,并解压得到文件夹 libsvm-svdd-3.18和libsvm-3.18;
2 将文件夹 libsvm-svdd-3.18根目录下的svm.cpp、svm.h和svm-train.c复制到 libsvm-3.18根目录下并覆盖回原来的这3个文件;将答文件夹 libsvm-svdd-3.18中 matlab里的文件 svmtrain.c 复制到 libsvm-3.18中的matlab文件夹中覆盖原来的c文件;
3 安装 libsvm-3.18,这个教程网上一大堆,主要是两步:mex -setup和 make;
4 测试安装是否成功。

Ⅳ 怎么在matlab中添加新的工具箱及遇到的问题解决

1、将下载的工具箱添加至matlab安装目录下
1、单独下载的工具箱
2、把新的工具箱拷贝到某个目录(我的是D:\soft\matlab2011b\toolbox)。
注意:你要是添加的很多个m文件,那就把这些m文件直接拷到再下一层你想要的工具箱的文件夹里
例如,我要添加的是支持向量机工具箱,在刚才的文件夹下我已经有svm(支持向量机工具箱)文件夹了,但有的m文件还没有,我就把新的m文件统统拷到D:\soft\matlab2011b\toolbox \svm目录下了。如果你连某工具箱(你打算添加的)的文件夹都没有,那就把文件夹和文件一起拷到D:\soft\matlab2011b\toolbox 下。
先把工具箱保存到MATLAB安装目录的根目录下面,然后运行matlab---->file---->set path---->add folder 然后把你的工具箱文件夹添加进去就可以了
3、在matlab的菜单file下面的set path把它( D:\soft\matlab2011b\toolbox \svm )加上。
4、 把路径加进去后在file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下。

Ⅳ matlab 支持向量机工具箱怎么用

有的工具箱有用户交互界面,可以直接在MATLAB的启动菜单下进入;
有的没有用户界面,但是有相关的程序(或者说函数)供调用;即使有界面的工具箱,也是有相应的函数的。

可以从帮助(Help)中查询MATLAB的工具箱的详细使用方法。
帮助里面对主题进行了分类,进入工具箱那一类即可

Ⅵ 最小二乘支持向量机工具箱如何使用

用LIBSVM工具箱抄,它是由台湾袭大学林智仁(Chih-Jen Lin)等开发和设计的,它是一个简单、易于使用并且快速有效的SVM软件工具包,可以解决C-支持向量分类(C-SVC)、v-支持向量分类(v-SVC)、分布估计(one-class SVM)、e-支持向量回归(e-SVR)

Ⅶ 如何在MATLAB中添加SVM函数工具箱

1、将下载的svm工具箱添加至matlab安装目录下
1、单独下载的工具箱
2、把新的工具箱拷贝到某个目录(我的是D:\soft\matlab2011b\toolbox)。
注意:你要是添加的很多个m文件,那就把这些m文件直接拷到再下一层你想要的工具箱的文件夹里
例如,我要添加的是支持向量机工具箱,在刚才的文件夹下我已经有svm(支持向量机工具箱)文件夹了,但有的m文件还没有,我就把新的m文件统统拷到D:\soft\matlab2011b\toolbox \svm目录下了。如果你连某工具箱(你打算添加的)的文件夹都没有,那就把文件夹和文件一起拷到D:\soft\matlab2011b\toolbox 下。
先把工具箱保存到MATLAB安装目录的根目录下面,然后运行matlab---->file---->set path---->add folder 然后把你的工具箱文件夹添加进去就可以了
3、在matlab的菜单file下面的set path把它( D:\soft\matlab2011b\toolbox \svm )加上。
4、 把路径加进去后在file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下。

Ⅷ matlab支持向量机工具箱怎么使用

有的工具箱有用户交互界面,可以直接在MATLAB的启动菜单下进入;
有的没有版用户界面,但是有相关的程序(权或者说函数)供调用;即使有界面的工具箱,也是有相应的函数的。

可以从帮助(Help)中查询MATLAB的工具箱的详细使用方法。
帮助里面对主题进行了分类,进入工具箱那一类即可

Ⅸ libsvm工具箱和lssvm工具箱有什么区别

1、这两个意义完全不一样,lssvm是最小二乘支持向量机,是一种算法 libsvm是一个支持版向量机的工具集合,权一个库;
2、LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;
3、而LSSVM是支持向量机算法的一种改进版本——即最小二乘支持向量机(Least Squares Support Vector Machine)。

Ⅹ 哪位朋友能介绍一下支持向量机工具libsvm的用法

LIBSVM的简单介绍 2006-09-20 15:59:48
大 中 小
1. LIBSVM 软件包简介
LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM )等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。LIBSVM 是一个开源的软件包,需要者都可以免费的从作者的个人主页http://www.csie.ntu.e.tw/~cjlin/
处获得。他不仅提供了LIBSVM的C++语言的算法源代码,还提供了Python、Java、R、MATLAB、Perl、Ruby、LabVIEW以及C#.net 等各种语言的接口,可以方便的在Windows 或UNIX 平台下使用。另外还提供了WINDOWS 平台下的可视化操作工具SVM-toy,并且在进行模型参数选择时可以绘制出交叉验证精度的等高线图。
2. LIBSVM 使用方法简介
LibSVM是以源代码和可执行文件两种方式给出的。如果是Windows系列操作系统,可以直接使用软件包提供的程序,也可以进行修改编译;如果是Unix类系统,必须自己编译。
LIBSVM 在给出源代码的同时还提供了Windows操作系统下的可执行文件,包括:进行支持向量机训练的svmtrain.exe;根据已获得的支持向量机模型对数据集进行预测的svmpredict.exe;以及对训练数据与测试数据进行简单缩放操作的svmscale.exe。它们都可以直接在DOS 环境中使用。如果下载的包中只有C++的源代码,则也可以自己在VC等软件上编译生成可执行文件。

3. LIBSVM 使用的一般步骤是:
1) 按照LIBSVM软件包所要求的格式准备数据集;
2) 对数据进行简单的缩放操作;
3) 考虑选用RBF 核函数;
4) 采用交叉验证选择最佳参数C与g ;
5) 采用最佳参数C与g 对整个训练集进行训练获取支持向量机模型;
6) 利用获取的模型进行测试与预测。

4. LIBSVM使用的数据格式
1)训练数据和检验数据文件格式如下:
<label> <index1>:<value1> <index2>:<value2> ...
其中<label> 是训练数据集的目标值,对于分类,它是标识某类的整数(支持多个类);对于回归,是任意实数。<index> 是以1开始的整数,可以是不连续的;<value>为实数,也就是我们常说的自变量。检验数据文件中的label只用于计算准确度或误差,如果它是未知的,只需用一个数填写这一栏,也可以空着不填。
在程序包中,还包括有一个训练数据实例:heart_scale,方便参考数据文件格式以及练习使用软件。可以编写小程序,将自己常用的数据格式转换成这种格式

2)Svmtrain和Svmpredict的用法
LIBSVM软件提供的各种功能都是DOS命令执行方式。我们主要用到两个程序,svmtrain(训练建模)和svmpredict(使用已有的模型进行预测),下面分别对这两个程序的使用方法、各参数的意义以及设置方法做一个简单介绍:
(1)Svmtrain的用法:
svmtrain [options] training_set_file [model_file]
Options:可用的选项即表示的涵义如下
-s svm类型:SVM设置类型(默认0)
0 -- C-SVC
1 --v-SVC
2 – 一类SVM
3 -- e -SVR
4 -- v-SVR
-t 核函数类型:核函数设置类型(默认2)
0 – 线性:u'v
1 – 多项式:(r*u'v + coef0)^degree
2 – RBF函数:exp(-r|u-v|^2)
3 –sigmoid:tanh(r*u'v + coef0)
-d degree:核函数中的degree设置(默认3)
-g 函数设置(默认1/ k)r(gama):核函数中的
-r coef0:核函数中的coef0设置(默认0)
-c cost:设置C-SVC, -SVR的参数(默认1)-SVR和
- SVR的参数(默认0.5)-SVC,一类SVM和-n nu:设置
-SVR-p e:设置的值(默认0.1)中损失函数
-m cachesize:设置cache内存大小,以MB为单位(默认40)
-e :设置允许的终止判据(默认0.001)
-h shrinking:是否使用启发式,0或1(默认1)
-wi C(C-SVC中的C)(默认1)weight:设置第几类的参数C为weight
-v n: n-fold交互检验模式
其中-g选项中的k是指输入数据中的属性数。option -v 随机地将数据剖分为n部分并计算交互检验准确度和均方根误差。以上这些参数设置可以按照SVM的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。training_set_file是要进行训练的数据集;model_file是训练结束后产生的模型文件,文件中包括支持向量样本数、支持向量样本以及lagrange系数等必须的参数;该参数如果不设置将采用默认的文件名,也可以设置成自己惯用的文件名。
(2)Svmpredict的用法:
svmpredict test_file model_file output_file
model_file 是由svmtrain产生的模型文件;test_file是要进行预测的数据文件;Output_file是svmpredict的输出文件。svm-predict没有其它的选项。
下面是具体的使用例子
svmtrain -s 0 -c 1000 -t 1 -g 1 -r 1 -d 3 data_file
训练一个由多项式核(u'v+1)^3和C=1000组成的分类器。
svmtrain -s 1 -n 0.1 -t 2 -g 0.5 -e 0.00001 data_file =-SVM (在RBF核函数exp(-0.5|u-v|^2)和终止允许限0.00001的条件下,训练一个 0.1)分类器。 svmtrain -s 3 -p 0.1 -t 0 -c 10 data_file =以线性核函数u'v和C=10及损失函数 0.1求解SVM回归。

阅读全文

与支持向量机工具箱安装相关的资料

热点内容
路由器上有unknown连接是什么设备 浏览:525
启辰D50分离轴承多少钱 浏览:386
牙机雕刻机与电动工具 浏览:208
外汇期货交易实验装置 浏览:791
设备投资怎么算 浏览:95
好的摄影器材有哪些 浏览:463
温州新五金制品有限公司怎么样 浏览:293
锦州五金机电城出租出售 浏览:417
卡尔蔡司公司有哪些医学器材 浏览:261
重庆市机械凿打岩石套什么定额 浏览:557
阀门外面加个框是什么意思 浏览:756
会议设备系统哪里有 浏览:340
打印室需要哪些设备多少钱 浏览:577
通用型机床设备加工用于什么 浏览:290
书画工具箱套装 浏览:772
燃烧固体需要哪些仪器 浏览:969
2213ktn1是什么轴承 浏览:640
电脑固体硬盘怎么加机械硬盘 浏览:197
昆山汽车门板超声波焊接机怎么样 浏览:787
发说说怎么隐藏设备 浏览:804