导航:首页 > 五金知识 > ga工具箱输出代数

ga工具箱输出代数

发布时间:2021-02-23 20:04:26

㈠ 请高人指点:matlab遗传算法工具箱编程,求一个多约束,多元非线性方程的最小值


将下属两个目标函数分别保存在两个m文件中
function f1=func1(x) %第一目标函数
f1=x(:,1).*x(:,1)./4+x(:,2).*x(:,2)./4;
function f2=func2(x) %第二目标函数
f2=x(:,1).*(1-x(:,2))+10;

function GA()
clear;clc;close all
NIND=100; %个体数目
MAXGEN=50; %最大遗传代数
NVAR=2; %变量个数
PRECI=20; %变量的二进制位数
GGAP=0.9; %代沟
trace1=[];trace2=[];trace3=[]; %性能跟踪
%建立区域描述器
% rep([PRECI],[1,NVAR])
FieldD=[rep([PRECI],[1,NVAR]);rep([1;2],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Chrom=crtbp(NIND,NVAR*PRECI); %初始种群
v=bs2rv(Chrom,FieldD) ; %初始种群十进制转换
gen=1;
while gen<MAXGEN,
[NIND,N]=size(Chrom);
M=fix(NIND/2);
ObjV1=func1(v(1:M,:)); %分组后第一目标函数值
FitnV1=ranking(ObjV1); %分配适应度值
SelCh1=select('sus',Chrom(1:M,:),FitnV1,GGAP); %选择
ObjV2=func2(v(M+1:NIND,:)); %分组后第二目标函数值
FitnV2=ranking(ObjV2); %分配适应度值
SelCh2=select('sus',Chrom(M+1:NIND,:),FitnV2,GGAP); %选择
SelCh=[SelCh1;SelCh2]; %合并
SelCh=recombin('xovsp',SelCh,0.7); %重组
Chrom=mut(SelCh); %变异
v=bs2rv(Chrom,FieldD);
trace1(gen,1)=min(func1(v));
trace1(gen,2)=sum(func1(v))/length(func1(v));
trace2(gen,1)=min(func2(v));
trace2(gen,2)=sum(func2(v))/length(func2(v));
trace3(gen,1)=min(func1(v)+func2(v));
trace3(gen,2)=sum(func1(v))/length(func1(v))+sum(func2(v))/length(func2(v));
gen=gen+1;
end
figure(1);clf;
plot(trace1(:,1));hold on;plot(trace1(:,2),'-.');
plot(trace1(:,1),'.');plot(trace1(:,2),'.');grid on;
legend('解的变化','种群均值的变化')
xlabel('迭代次数');ylabel('目标函数值');
figure(2);clf;
plot(trace2(:,1));hold on;
plot(trace2(:,2),'-.');
plot(trace2(:,1),'.');
plot(trace2(:,2),'.');grid;
legend('解的变化','种群均值的变化');
xlabel('迭代次数');ylabel('目标函数值');
figure(3);clf;
plot(trace3(:,1));hold on;
plot(trace3(:,2),'-.');
plot(trace3(:,1),'.');
plot(trace3(:,2),'.');grid;
legend('解的变化','种群均值的变化');
xlabel('迭代次数');ylabel('目标函数值');
figure(4);clf;plot(func1(v));hold on;
plot(func2(v),'r-.');grid;

㈡ MATLAB遗传算法工具箱求解非线性多目标优化问题

将下属两个目标函数分别保存在两个m文件中
function f1=func1(x) %第一目标函数
f1=x(:,1).*x(:,1)./4+x(:,2).*x(:,2)./4;
function f2=func2(x) %第二目标函数
f2=x(:,1).*(1-x(:,2))+10;

function GA()
clear;clc;close all
NIND=100; %个体数目
MAXGEN=50; %最大遗传代数
NVAR=2; %变量个数
PRECI=20; %变量的二进制位数
GGAP=0.9; %代沟
trace1=[];trace2=[];trace3=[]; %性能跟踪
%建立区域描述器
% rep([PRECI],[1,NVAR])
FieldD=[rep([PRECI],[1,NVAR]);rep([1;2],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Chrom=crtbp(NIND,NVAR*PRECI); %初始种群
v=bs2rv(Chrom,FieldD) ; %初始种群十进制转换
gen=1;
while gen<MAXGEN,
[NIND,N]=size(Chrom);
M=fix(NIND/2);
ObjV1=func1(v(1:M,:)); %分组后第一目标函数值
FitnV1=ranking(ObjV1); %分配适应度值
SelCh1=select('sus',Chrom(1:M,:),FitnV1,GGAP); %选择
ObjV2=func2(v(M+1:NIND,:)); %分组后第二目标函数值
FitnV2=ranking(ObjV2); %分配适应度值
SelCh2=select('sus',Chrom(M+1:NIND,:),FitnV2,GGAP); %选择
SelCh=[SelCh1;SelCh2]; %合并
SelCh=recombin('xovsp',SelCh,0.7); %重组
Chrom=mut(SelCh); %变异
v=bs2rv(Chrom,FieldD);
trace1(gen,1)=min(func1(v));
trace1(gen,2)=sum(func1(v))/length(func1(v));
trace2(gen,1)=min(func2(v));
trace2(gen,2)=sum(func2(v))/length(func2(v));
trace3(gen,1)=min(func1(v)+func2(v));
trace3(gen,2)=sum(func1(v))/length(func1(v))+sum(func2(v))/length(func2(v));
gen=gen+1;
end
figure(1);clf;
plot(trace1(:,1));hold on;plot(trace1(:,2),'-.');
plot(trace1(:,1),'.');plot(trace1(:,2),'.');grid on;
legend('解的变化','种群均值的变化')
xlabel('迭代次数');ylabel('目标函数值');
figure(2);clf;
plot(trace2(:,1));hold on;
plot(trace2(:,2),'-.');
plot(trace2(:,1),'.');
plot(trace2(:,2),'.');grid;
legend('解的变化','种群均值的变化');
xlabel('迭代次数');ylabel('目标函数值');
figure(3);clf;
plot(trace3(:,1));hold on;
plot(trace3(:,2),'-.');
plot(trace3(:,1),'.');
plot(trace3(:,2),'.');grid;
legend('解的变化','种群均值的变化');
xlabel('迭代次数');ylabel('目标函数值');
figure(4);clf;plot(func1(v));hold on;
plot(func2(v),'r-.');grid;

㈢ 如何用遗传算法工具箱中的函数画出适应度函数曲线

matlab有遗传算法工具箱。

核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意】matlab工具箱函数必须放在工作目录下
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

㈣ 有关怎么应用matlab遗传算法工具箱GUI

GA就是钙的意识,如果是CA 则是癌症的意识。

㈤ matlab工具箱

最好下个金山快译 译一下就好了
我们在学校机房做实验的时候都是看英文的
大不了用文曲星咯

㈥ 遗传算法工具箱的具体使用

matlab遗传算法工具箱函数及实例讲解 核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

㈦ 遗传算法工具箱中设置了elite count不为零的,但是算法运行过程中为什么还会出现目标值下降

楼主。抄。你尽管放心。。
你做出袭来的结果应该是2条曲线,一条是种群均值的蓝线,一条是最优值的红线,然后2条线都是呈现下降趋势是吧?
首先,你要明白一点,种群均值是逐渐向最优值靠拢的,这点总能理解吧?不是说你看到下降的函数就表明结果错误了,GAOP工具箱就是这样结果。在开始的几代已经找到了最优值,那越往后就是逐渐收敛啊,交叉来交叉去已经没有新的优良种群了,所以最后逐渐收敛。
你说对不?求分数

㈧ 遗传算法工具箱中怎么画出遗传代数与优化变量的关系图

我没用来过MatLab的遗传算法工源具箱,我是自己用C语言实现的遗传算法。想要直观地观察遗传代数与优化变量的关系,有两种常用办法:一种是直接把N个优化变量+遗传代数做一个(N+1)维的坐标系,把每代的各优化变量取值添加进坐标系中,生成MatLab或其它看图工具能识别的数据文件进行观看;二种办法是每代求出各优化变量取值的均方差,以均方差和遗传代数建立一个二维坐标系,如前所述生成数据文件进行观看。我一般采用的是第二种方法,并且,在遗传算法内部,我也是用这种办法来判断种群进化情况的,很有效。

阅读全文

与ga工具箱输出代数相关的资料

热点内容
锅炉辅助设备是哪些 浏览:214
什么病仪器很难查出来 浏览:681
消防电动排气阀门 浏览:550
天津阀门厂电动阀型号 浏览:110
制冷剂的比热容是多少 浏览:698
检测与反馈装置的区别 浏览:799
全身扫描是用什么仪器 浏览:993
刚良喷涂设备五金工具批发部怎么样 浏览:935
暖气阀门上边的小阀门拧不动 浏览:276
高温阀门坏了怎么换 浏览:198
word工具箱安卓版下载 浏览:720
泰医化工专业实验室装置参观内容 浏览:668
汽车仪表盘出现叹号是什么情况 浏览:128
帝克电动工具气泵 浏览:667
临潼区阀门厂 浏览:979
5组装实验装置的顺序是 浏览:624
轮毂轴承密封圈采用什么制造 浏览:509
中转仪器上bt什么意思 浏览:677
不可以直接加热的仪器有什么 浏览:808
自动售货机装置设计 浏览:435