导航:首页 > 五金知识 > 概率神经网络算法工具箱

概率神经网络算法工具箱

发布时间:2021-02-18 17:47:38

1. 怎么用遗传算法工具箱调用神经网络来寻求最优解啊

把你之前训练好的网络设置成一个全局变量ann,然后建立一个函数func,在func函数中调用这个训练好的网络ann获得输出。最后,遗传算法调用func作为目标函数

2. MATLAB神经网络工具箱中训练函数和自适应学习函数区别

训练复函数和自适应学习函制数区别:
从范围上:
训练函数包含学习函数,学习函数是属于训练函数的一部分;
从误差上:
训练函数对整体来说误差是最小,学习函数对于单个神经元来说误差是最小;
从服装整体上:
训练函数是全局调整权值和阈值,学习函数是局部调整权值和阈值。

1. 学习函数
learnp 感知器学习函数
learnpn 标准感知器学习函数
learnwh Widrow_Hoff学习规则
learngd BP学习规则
learngdm 带动量项的BP学习规则
learnk Kohonen权学习函数
learncon Conscience阈值学习函数
learnsom 自组织映射权学习函数

2. 训练函数
trainwb 网络权与阈值的训练函数
traingd 梯度下降的BP算法训练函数
traingdm 梯度下降w/动量的BP算法训练函数
traingda 梯度下降w/自适应lr的BP算法训练函数
traingdx 梯度下降w/动量和自适应lr的BP算法训练函数
trainlm Levenberg_Marquardt的BP算法训练函数
trainwbl 每个训练周期用一个权值矢量或偏差矢量的训练函数

3. 神经网络工具箱与编程实现哪个更好

首先说一下神经网络工具箱,在我刚刚接触神经网络的时候,我就利用工具箱去解决问题,这让我从直观上对神经网络有了了解,大概清楚了神经网络的应用范围以及它是如何解决实际问题的。
工具箱的优势在于我们不用了解其内部的具体实现,更关注于模型的建立与问题的分析,也就是说,如果抛开算法的错误,那么用工具箱来解决实际问题会让我们能把更多的精力放在实际问题的模型建立上,而不是繁琐的算法实现以及分析上。

其次谈谈编程实现神经网络,由于个人能力有限,所以只是简单的编程实现过一些基本神经算法,总的体会就是编程的过程让我对算法有了更透彻的理解,可以更深入的分析其内部运行机制,也同样可以实现一下自己的想法,构建自己的神经网络算法。

以上是我对两个方法的简单理解。那究竟哪个方法更好些呢?我个人的看法是要看使用者的目的是怎样的。

如果使用者的目的在于解决实际问题,利用神经网络的函数逼近与拟合功能实现自己对实际问题的分析与模型求解,那我的建议就是利用神经网络工具箱,学过编程语言的人都知道,无论用什么编程语言将一个现有的算法编程实现达到可用的结果这一过程都是及其繁琐与复杂的,就拿简单的经典BP神经网络算法来说,算法本身的实现其实并不难,可根据不同人的能力,编出来的程序的运行效率是大不相同的,而且如果有心人看过matlab的工具箱的源码的话,应该能发现,里面采用的方法并不完全是纯粹的BP经典算法,一个算法从理论到实现还要依赖与其他算法的辅助,计算机在计算的时候难免出现的舍入误差,保证权值的时刻改变,这都是编程人员需要考虑的问题,可能还有很多的问题
这样的话,如果自己单人编程去实现神经网络来解决实际问题的话,整体效率就没有使用工具箱更好。

如果使用者的目的在于分析算法,构造新的网络的话那当然首推自己编程实现。个人的感觉就是,如果真的是自己完全编程实现的话,对算法会有很深入的理解,在编程的调试过程中,也会领悟到很多自己从前从来没有考虑过的问题,像权值的初始的随机选取应该怎么样,将训练样本按什么顺序输入等,这都是编程实现所要考虑的问题,不同的方法得到的结果会有很大的差距。

4. matlab神经网络工具箱具体怎么用

为了看懂师兄的文章中使用的方法,研究了一下神经网络
昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,网络知道里倒是有一个,可以运行的,先贴着做标本

% 生成训练样本集
clear all;
clc;
P=[110 0.807 240 0.2 15 1 18 2 1.5;
110 2.865 240 0.1 15 2 12 1 2;
110 2.59 240 0.1 12 4 24 1 1.5;
220 0.6 240 0.3 12 3 18 2 1;
220 3 240 0.3 25 3 21 1 1.5;
110 1.562 240 0.3 15 3 18 1 1.5;
110 0.547 240 0.3 15 1 9 2 1.5];
0 1.318 300 0.1 15 2 18 1 2];
T=[54248 162787 168380 314797;
28614 63958 69637 82898;
86002 402710 644415 328084;
230802 445102 362823 335913;
60257 127892 76753 73541;
34615 93532 80762 110049;
56783 172907 164548 144040];
@907 117437 120368 130179];
m=max(max(P));
n=max(max(T));
P=P'/m;
T=T'/n;
%-------------------------------------------------------------------------%
pr(1:9,1)=0; %输入矢量的取值范围矩阵
pr(1:9,2)=1;
bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');
%建立BP神经网络, 12个隐层神经元,4个输出神经元
%tranferFcn属性 'logsig' 隐层采用Sigmoid传输函数
%tranferFcn属性 'logsig' 输出层采用Sigmoid传输函数
%trainFcn属性 'traingdx' 自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数
%learn属性 'learngdm' 附加动量因子的梯度下降学习函数
net.trainParam.epochs=1000;%允许最大训练步数2000步
net.trainParam.goal=0.001; %训练目标最小误差0.001
net.trainParam.show=10; %每间隔100步显示一次训练结果
net.trainParam.lr=0.05; %学习速率0.05
bpnet=train(bpnet,P,T);
%-------------------------------------------------------------------------
p=[110 1.318 300 0.1 15 2 18 1 2];
p=p'/m;
r=sim(bpnet,p);
R=r'*n;
display(R);

运行的结果是出现这样的界面

点击performance,training state,以及regression分别出现下面的界面

再搜索,发现可以通过神经网络工具箱来创建神经网络,比较友好的GUI界面,在输入命令里面输入nntool,就可以开始了。

点击import之后就出现下面的具体的设置神经网络参数的对话界面,
这是输入输出数据的对话窗

首先是训练数据的输入

然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等

点击view,可以看到这是神经网络的可视化直观表达

创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果

下面三个图形则是点击performance,training state以及regression而出现的

下面就是simulate,输入的数据是用来检验这个网络的数据,output改一个名字,这样就把输出数据和误差都存放起来了

在主界面上点击export就能将得到的out结果输入到matlab中并查看

下图就是输出的两个outputs结果

还在继续挖掘,to be continue……

5. matlab工具箱中的神经网络和遗传算法要怎么调用

都是有两种调用抄方法,一种图形界面的,这个从开始菜单,然后工具,然后从里面找神经网络 neural network,遗传算法工具是 全局优化工具箱里面的,global optimization。
另外 一种通过命令行调用,这个需要你理解你都要做什么,我用神经网络举例。第一步需要先整理出输入变量和输出变量,第二步设计并初始化神经网络,第三部训练,第四部获得结果。
如果你想结合这两者,就会更加复杂,详细的你可以再问。我曾经做过用遗传算法优化神经网络的工具。

6. 你好,请问你知道在matlab神经网络工具箱里,学习率在哪里设置吗

lr就是学习率,performance是主要指标,你在程序里写的goal就是MSE,决定最后精度的。

%%BP算法
functionOut=bpnet(p,t,p_test)
globalS1
net=newff(minmax(p),[S1,8],{'tansig','purelin'},'trainlm');%trainlm训练函数最有版效
%net=newff(P,T,31,{'tansig','purelin'},'trainlm');%新版用权法
net.trainParam.epochs=1000;
net.trainParam.goal=0.00001;
net.trainParam.lr=0.01;%这是学习率
net=train(net,p,t);
Out=sim(net,p_test);
end


7. matlab神经网络工具箱,会比自己写的遗传算法优化bp神经网络好用嘛

1、遗传算法优化BP神经网络是指优化神经网络的参数; 2、因此,对训练时间没有影响。

8. 求推荐一本有具体代码实现的神经网络算法的书籍非matlab工具箱那种

MATLAB智能算法30个案例分析第一例就是非工具箱,具体有需求可以跟我留你的联系方式,发给你这个pdf

9. 如何使用matlab神经网络工具箱

为了看懂师兄的文章中使用的方法,研究了一下神经网络
昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,网络知道里倒是有一个,可以运行的,先贴着做标本

% 生成训练样本集
clear all;
clc;
P=[110 0.807 240 0.2 15 1 18 2 1.5;
110 2.865 240 0.1 15 2 12 1 2;
110 2.59 240 0.1 12 4 24 1 1.5;
220 0.6 240 0.3 12 3 18 2 1;
220 3 240 0.3 25 3 21 1 1.5;
110 1.562 240 0.3 15 3 18 1 1.5;
110 0.547 240 0.3 15 1 9 2 1.5];
0 1.318 300 0.1 15 2 18 1 2];
T=[54248 162787 168380 314797;
28614 63958 69637 82898;
86002 402710 644415 328084;
230802 445102 362823 335913;
60257 127892 76753 73541;
34615 93532 80762 110049;
56783 172907 164548 144040];
@907 117437 120368 130179];
m=max(max(P));
n=max(max(T));
P=P'/m;
T=T'/n;
%-------------------------------------------------------------------------%
pr(1:9,1)=0; %输入矢量的取值范围矩阵
pr(1:9,2)=1;
bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');
%建立BP神经网络, 12个隐层神经元,4个输出神经元
%tranferFcn属性 'logsig' 隐层采用Sigmoid传输函数
%tranferFcn属性 'logsig' 输出层采用Sigmoid传输函数
%trainFcn属性 'traingdx' 自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数
%learn属性 'learngdm' 附加动量因子的梯度下降学习函数
net.trainParam.epochs=1000;%允许最大训练步数2000步
net.trainParam.goal=0.001; %训练目标最小误差0.001
net.trainParam.show=10; %每间隔100步显示一次训练结果
net.trainParam.lr=0.05; %学习速率0.05
bpnet=train(bpnet,P,T);
%-------------------------------------------------------------------------
p=[110 1.318 300 0.1 15 2 18 1 2];
p=p'/m;
r=sim(bpnet,p);
R=r'*n;
display(R);

运行的结果是出现这样的界面

点击performance,training state,以及regression分别出现下面的界面

再搜索,发现可以通过神经网络工具箱来创建神经网络,比较友好的GUI界面,在输入命令里面输入nntool,就可以开始了。

点击import之后就出现下面的具体的设置神经网络参数的对话界面,
这是输入输出数据的对话窗

首先是训练数据的输入

然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等

点击view,可以看到这是神经网络的可视化直观表达

创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果

10. matlab神经网络工具箱与遗传算法工具箱。

j

阅读全文

与概率神经网络算法工具箱相关的资料

热点内容
自己更换暖气温控阀门 浏览:612
总裁仪表盘显示p是什么意思 浏览:480
老款朗逸变速箱连体轴承怎么拆 浏览:65
CW慈兴轴承多少钱 浏览:625
机械师x6是什么时候出来的 浏览:363
地暖总阀门怎么关闭 浏览:511
笔记本如何安装j机械键盘 浏览:229
公司购买的音响设备怎么入账 浏览:79
辽宁深沟球轴承多少钱 浏览:969
建筑工地用到的机械有哪些 浏览:993
喷泉实验装置介绍 浏览:36
潜孔钻自动换杆装置 浏览:941
比德文电瓶车设备在哪里 浏览:302
仓库常用的分拣设备有哪些 浏览:500
机械效率是什么功率和什么功率的比值 浏览:950
用什么仪器测量轴线 浏览:420
格里空调怎么制冷 浏览:552
电动工具管理法律法规 浏览:537
监控摄像设备添加什么主材 浏览:53
汽车空调怎么保养不制冷 浏览:61